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Notation

Throughout this paper we use the following notation for spaces of
sequences. Let D be a finite set of integers or pairs of integers. Then

Σ = DN

Σ∗k = Dk

Σ∗ =
⋃
k∈N

Σ∗k

we denote a sequence in Σ or Σ∗ by i = i1, i2, i3 . . .

we denote finite sequences in Σ∗k by ik = i1, . . . ik

Sometimes it will be convenient to not include the subscript on a finite

sequence and so indicate its length by: |i|.

The sequence obtained by concatenating two sequences is denoted by i, j.

If, given two sequences i and j, we have:

n = max{k : there exists pk and i′ and j′ such that i = pk, i
′ and j = pk, j

′}

then the ‘intersection’ of two sequences is given by i ∧ j = in

4



2 Introduction

An iterated function system is a collection of contractions - maps which
shrink space - that provides a recipe for constructing fractal sets. To
follow this recipe you have to consider strings of compositions of your
maps; these compositions will also be contractions but with a greater
contractive effect. As your strings become longer and longer, their
contractive power grows exponentially. However, the number of com-
binations of compositions is also growing exponentially: if you begin
with 2 maps then there are 2n distinct n-length compositions. By
taking the union of the images of these n-length compositions applied
to some initial set, you often end up with a fractal-type shape made
up of small parts that resemble the whole. As n tends to infinity, a
‘limit set’ is obtained that may well exhibit true self-similarity, hav-
ing arbitrarily small subsets look just like the whole set. In section
4 we make rigorous this notion of a ‘limit set’ and present a proof of
Hutchinson [8] that guarantees its existence and uniqueness. We call
such a set the attractor of the system.

This paper will be devoted to understanding one important aspect
of iterated function systems: the dimensions of their attractors. Em-
phasis should be placed on the plural since there are many different
notions of the dimension of a set, each reflecting in some way its local
geometry. We investigate the Hausdorff and Minkowski dimensions
of an attractor, which is a difficult topic and fruitful line of research.
It will become evident rather quickly that little can be said in total
generality: we must place restrictions on the maps in our system if
we are to find formulae for their dimensions. A classic result in the
field, stated in section 4, gives a closed form expression for the Haus-
dorff and Minkowski dimension of a system consisting of similarities
(satisfying a certain condition).

The question that motivates us is this: can we find analogous re-
sults for more general classes of mappings? To provide an answer,
we spend sections 5 and 6 presenting papers of McMullen [11] and
Falconer [5] (respectively) which obtain dimensional formulae for sys-
tems made up of affine transformations. McMullen’s formulae are for
a specific class of attractors that are a type of self-affine ‘carpet’ (jump
ahead to page 20 for an idea), whereas Falconer’s results hold, with
some assumptions, for almost-all self-affine attractors.

Finally, in section 7 we consider systems of contractions that are
allowed to be non-linear. The analysis here draws from a rich body
of theory known as the thermodynamic formalism, which enables us
to present a result original to this paper on the Hausdorff dimension
of a ‘non-linear carpet’, which bears some resemblance to the carpets
considered by McMullen.
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3 Generation of Measures

In this short section we present a collection of measure-theoretic re-
sults, without proofs, that we require for later applications. Unless
otherwise stated, assume all definitions and results are to be found in
Bartle [1].

Definition 3.1. A collection of subsets A of a space X is called an
algebra of subsets if the following are satisfied:

i) ∅ ∈ A

ii) A is closed under complements: A ∈ A =⇒ Ac ∈ A

iii) A is closed under finite unions: A1, A2, . . . An ∈ A =⇒
n⋃
i=1

Ai ∈ A

Recall that a σ-algebra is defined similarly expect that it has count-
able, not just finite, closure. The two concepts can be related by the
next definition.

Definition 3.2. The σ-algebra generated by a set Y is simply the
intersection of all σ-algebras containing Y . Of particular importance
is the σ-algebra generated by an algebra A, which we will call σ(A).

One can prove that an arbitrary intersection of σ-algebras is again a
σ-algebra so this definition is valid. The most important example of
this definition in action is the Borel σ-algebra.

Example 3.3. Let X be a topological space. Take Y to be the set
consisting of all open subsets of X. Then the σ-algebra generated by
Y is called the Borel σ-algebra and labelled B.

Now we come to an important concept in the construction of a
measure.

Definition 3.4. Let X be a set. An outer measure is an extended-
real valued set-function defined on the power set: ϕ : P(X) → R+

satisfying:

i) ϕ(∅) = 0

ii) monotonicity: A ⊂ B =⇒ ϕ(A) ≤ ϕ(B)

iii) Countable subadditivity: {Ai}∞i=1 subsets of X =⇒ ϕ(
∞⋃
i=1

Ai) ≤
∞∑
i=1

ϕ(Ai)

In both the methods of measure construction to follow, we will first
produce outer measures that become actual measures after restricting
their domain.
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Method I of measure construction 3.1.

Rather peculiarly, this method involves first defining an ‘underes-
timate’ of the measure we want to construct via something known as
a pre-measure, which we then use to produce an ‘overestimate’ in the
form of an outer-measure. Then finally, via the famous Carathéodory
extension theorem, we arrive at a measure.

Definition 3.5. Let A be an algebra of subsets of X. We call µ? :
A → R+ a pre-measure if it satisfies the following:

i) µ?(∅) = 0, µ?(X) <∞

ii) If {Ai}∞i=1 ⊂ A then
∞⋃
i=1

Ai ∈ A =⇒ µ?(
∞⋃
i=1

Ai) =
∞∑
i=1

µ?(Ai)

Proposition 3.6. Let (X,A, µ?) be a space equipped with a pre-
measure on an algebra. Then, for any E ⊂ X, the following is an
outer-measure:

ϕ(E) = inf

{
∞∑
i=1

µ?(Ai) : E ⊂
∞⋃
i=1

Ai where Ai ∈ A

}

where the infimum is taken over all covers of E by sets in the algebra
(By convention, we take the infimum over the empty set to be infinite).

Theorem 3.7 (Carathéodory Extension Theorem). The restriction
of ϕ to σ(A) yields a measure µ. In fact, µ is the unique extension of
µ? to a measure on σ(A).

Remark 3.8. The above is a weak version of the theorem. It could
be generalised by taking µ? and hence µ to be σ-finite. Also, ϕ could
be restricted to a larger σ-algebra than σ(A), however this fact is
unnecessary for our purposes.

A useful application of the above theory is found on ΣN = {1, . . . , N}N,
the sequence space on N digits. A cylinder on this space is defined
as:

C(i1, . . . , in) = {(xj)∞j=1 ∈ ΣN : xj = ij for all 1 ≤ j ≤ n}

Denote the Algebra produced by taking finite unions and complements
of cylinders by A. We will assume throughout this paper that Σ is
equipped with the metric

d(i, j) = 2−|i∧j| for i, j ∈ Σ
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under this metric Σ is a compact space and cylinders are open balls,
implying σ(A) = B. It turns out that by defining a finite positive
real-valued set function on cylinders that vanishes on the empty set
and is finitely additive, one completely specifies a pre-measure on A
and hence, by the extension theorem, a measure on σ(A) = B.

We can therefore define a class of measures, known as the Bernoulli
measures, as follows.

Definition 3.9. Let p = (p1, . . . , pN) be a probability vector. Then
define µp by

µp(C(i1, . . . , in)) = pi1 · · · pin
One may think of pj as representing the probability that symbol j will
be the next to occur in a given string.

Method II of measure construction 3.2.

As in Rogers [14], we now outline an alternative method for gen-
erating a measure, one that leads to the establishment of Hausdorff
measure. Let (X,A) be a metric space equipped with an algebra. For
a subset E ⊂ X we will use the term δ-cover to refer to any cover of
E by sets that each have diameter less than some δ > 0.

Definition 3.10. Take φ : A → R+ be a set-function such that
φ(∅) = 0. For δ > 0 and E ⊂ X define:

ϕδ(E) = inf

{
∞∑
i=1

φ(Ai) : E ⊂
∞⋃
i=1

Ai, Ai ∈ A and diam(Ai) ≤ δ

}
where the infimum is taken over all δ-covers of E with elements in A.

Now, note that δ ≤ δ′ ⇒ ϕδ′(E) ≤ ϕδ(E) for any E ⊂ X, so ϕδ
is decreasing in δ. Thus, the following limit exists for any set E (if we
allow it to take the value +∞):

lim
δ→0

ϕδ(E) = ϕ(E)

Theorem 3.11. ϕ - as constructed in definition (3.10) - is an outer
measure that restricts to a measure on σ(A).

For purposes of measure construction this theorem is powerful:
one may create a measure simply be specifying a positive valued set
function φ as in (3.10). The trade-off is that the measure thus obtained
is less explicit and generally difficult to evaluate even for simple sets.
This is certainly the case for the Hausdorff measures, which we define
for euclidean space equipped with the usual metric.
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Definition 3.12. Let E ⊂ Rn and s ∈ R+. Choose φ : B→ R+ such
that φ(E) = |E|s (assuming unbounded sets to have infinite diameter)
and denote by Hs the resulting measure. For total clarity we rewrite
the formula for its construction:

Hs
δ(E) = inf

{
∞∑
i=1

|Ai|s | {Ai} is a δ - cover of F

}

Where δ > 0. Taking the limit:

Hs(E) = lim
δ→0
Hs
δ(E)

gives an outer measure which restricts to a measure on the Borel sets
B.

Product Measures 3.3.

In this subsection, we address the problem of constructing a mea-
sure on the Cartesian product of two measure spaces such that the
new measure has the intuitive property of splitting into a product of
the measures defined on the factor spaces. We will first need to define
a sigma algebra for the product space.

Definition 3.13. Let (X,X ) , (Y,Y) be measurable spaces and Z =
X × Y . Let A ∈ X , B ∈ Y and call A×B a rectangle. The collection
of all finite unions of rectangles, Γ, is an algebra. we write Z = σ(Γ).

Theorem 3.14 (Product Measure). Let (X,X , µ) , (Y,Y , ν) be σ-
finite measure spaces. Then there exists a unique measure λ defined
on Z such that

λ(A×B) = µ(A)ν(B) for all A ∈ X and B ∈ Y

Example 3.15. Let µ be a measure defined on (R,B). Then there
exists a unique n-fold product measure we can denote by µn. The
sigma algebra generated by rectangles for which µn is defined turns
out to the Borel sigma algebra for Rn.

The central motivation for investigating product measures is to
better understand double integrals (and by induction, n-fold inte-
grals). The following celebrated theorems provide conditions for trans-
posing the order of integration by relating the double integrals to the
integral over the product space.
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Theorem 3.16 (Tonelli). Let (X,X , µ), (Y,Y , ν) be σ-finite measure
spaces. Suppose F : X × Y → R+ is measurable and non-negative.
Consider

Fx(y) = F (x, y) Fy(x) = F (x, y)

Then f and g defined below are measurable and integrable

f(x) =

∫
Y

Fxdν g(y) =

∫
X

Fydµ (3.1)

their integrals satisfy:∫
X

fdµ =

∫
X×Y

Fdλ =

∫
Y

gdν (3.2)

The next theorem deduces the same result but shifts an assump-
tion: we remove non-negativity of F and instead demand integrability.

Theorem 3.17 (Fubini). Let (X,X , µ), (Y,Y , ν) be σ-finite measure
spaces. Suppose F : X × Y → R+ is measurable (possibly negative-
valued) and integrable. Then (3.2) holds.
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4 Iterated function systems: concepts and

techniques

We begin with an informal motivating example. The middle third
Cantor set, C, is constructed iteratively by first removing the middle
third portion of the unit interval and then the middle thirds of the
two resulting intervals, repeating in this fashion for each collection of
2n intervals. Specifically, set E0 = [0, 1] and

E1 =

[
0,

1

3

]
∪
[

2

3
, 1

]
, E2 =

[
0,

1

9

]
∪
[

2

9
,
1

3

]
∪
[

2

3
,
7

9

]
∪
[

8

9
, 1

]
, E3 = . . .

With the sequence of sets thus obtained, we can define C = ∩∞k=0Ek.

Figure 1: First 3 stages in construction of Cantor set

C has many marvellously strange properties. For instance, it is
totally disconnected, nowhere dense, has the cardinality of the contin-
uum and yet its Lebesgue measure is 0 [13]. However, it is awkward
to deduce such facts from the fairly inaccessible definition provided
above. That is why we need the alternative, more elegant, method of
construction derived by considering the maps:

f0(x) =
1

3
x, f2(x) =

1

3
x+

2

3

If we denote a k-length string of zeros and twos by (i1i2, . . . ik), then
we can express Ek above by the union over all such strings:

Ek =
⋃

(i1,...,ik)

fi1 ◦ · · · ◦ fik([0, 1])

It turns out that for any x ∈ C, there exists a sequence (i1, i2, . . .) ∈
{0, 2}N such that:

{x} =
∞⋂
k=1

fi1 ◦ · · · ◦ fik([0, 1]) (4.1)

You can picture this sequence quite easily: starting with the unit
interval in the above figure, imagine working your way down by, at
any stage, picking only one of the two intervals directly below you. In
this sense, it is like descending a highly pathological ladder. It should
be intuitive that the shrinking rungs of your ladder approximate a
point arbitrarily well.
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Astonishingly, the sequence of zeros and twos associated to x in
(4.1) give its trinary expansion i.e x = 0.i1i2i3 . . . in base-3. So whilst
we introduced the cantor set geometrically, the insight afforded by the
maps f0 and f2 suggest it might be more natural to think of C as a
code. With this thought in mind we move to the general case and note
that throughout the rest of the section all definitions and proofs can
be found in Falconer [6] - unless otherwise stated.

Iterated function systems 4.1.

An iterated function system is a particularly concise method for
constructing intricate fractal shapes that allows plenty of fruitful anal-
ysis to be performed with (relative) ease. The process involves defining
a finite collection of contraction mappings and then taking all possible
k-length strings of compositions of these maps, the union of which will
typically approximate a fractal (as the Ek’s above do).

Definition 4.1. Let X ⊂ Rn. A mapping T : X → X is a contraction
if there exists 0 < r < 1, called the contraction ratio, such that

|T (x)− T (y)| ≤ r|x− y| for all x, y ∈ X

If equality holds, we shall call the map T a similarity contraction since
T shrinks sets into geometrically similar ones.

Definition 4.2. An iterated function system is a collection of maps
T = {Ti}di=1, d ≥ 2 where each Ti is a contraction (the ratios need not
be the same).

We are interested in sets that are invariant with respect to an
iterated function system, by which we mean a non-empty, compact
set Λ ⊂ X satisfying:

d⋃
i=1

Ti(Λ) = Λ

If the images Ti(Λ) are disjoint, it is not obvious under ordinary geo-
metric intuition that such a set Λ could exist. Somewhat surprisingly
then, the theorem presented shortly due to Hutchinson guarantees the
existence of a unique attractor associated with a given IFS. In the case
of Ti’s disjoint this attractor will necessarily be totally disconnected
and generally a fractal.

In order to present Hutchinson’s theorem. we define an intriguing
metric known as the Hausdorff metric which we define for X , the
collection of all non-empty, compact subsets of X.
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Definition 4.3. Define the ε-neighbourhood of a set A ∈ X to be:

Aε = {x ∈ X : ∃y ∈ X such that |x− y| < ε}

Then the following is a metric on X :

d : X × X → R; d(A,B) = inf{ε : A ⊂ Bε and B ⊂ Aε}

We note, without proof, that this defines a complete metric on X , so
Cauchy sequences of sets converge to a set in the space.

Hutchinson’s theorem is most elegantly proved by an application
of the Banach contraction mapping theorem applied to the operator
T : X → X given by

T (E) =
d⋃
i=1

Ti(E)

Moreover, the proof has a constructive flavour insofar as it tells us
that the iterates T k(E) give increasingly good approximations to the
invariant set.

Theorem 4.4 (Hutchinson). Let T = {Ti}di=1 be an iterated function
system on X with associated contraction ratios 0 < ri < 1. Then
there exists a unique invariant set Λ ∈ X (also called the attractor of
the system). If E ∈ X such that Ti(E) ⊂ E for all i ∈ {1, . . . d} then

Λ =
∞⋂
k=0

T k(E) =
∞⋂
k=0

⋃
(i1,...,ik)

Ti1 ◦ · · · ◦ Tik(E) (4.2)

where (i1, . . . , ik) ∈ {1, . . . , d}k.

Proof. Firstly, we show that the operator T is a contraction. Let
A,B ∈ X . Then:

d(T (A), T (B)) = d(
d⋃
i=1

Ti(A),
d⋃
i=1

Ti(B)) ≤ max
1≤i≤d

d(Ti(A), Ti(B))

This bound is non-optimal but sufficient; it holds because the ε-
neighbourhood of each Ti(A) - where ε is given by the maximum
above - must contain the respective Ti(B), hence ∪di=1(Ti(A))ε con-
tains ∪di=1Ti(B). By symmetry, we can interchange A and B yielding
∪di=1Ti(A) ⊂ ∪di=1(Ti(B))ε. This justifies the upper bound.

Since the Ti’s are contractions:

d(T (A), T (B)) ≤ (max
1≤i≤d

ri)d(A,B)
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this proves that T is a contraction. Now we can apply the Banach
contraction mapping theorem, which says that T has a unique fixed
‘point’ i.e invariant set Λ. Moreover the contraction mapping theorem
says that:

lim
k→∞

d(T k(E),Λ) = 0

for any E ∈ X . In particular, taking E ∈ X such that Ti(E) ⊂ E
for all i = 1, . . . d it follows that T (E) ⊂ E and so {T k(E)}∞k=1 is a
decreasing sequence of compact sets, implying:

Λ =
∞⋂
k=1

T k(E)

(4.2) offers a powerful way of conceptualising the attractor of an
iterated function system. It says that we can approximate Λ by taking
the union over all k-length compositions of our contractions. More-
over, this produces an over-estimate in the sense that T k(E) is a cover
of the attractor. This property is crucial in arguments used to find
the dimension of Λ.

Even more remarkably, (4.2) implies that an infinite sequence of
compositions corresponds (not necessarily uniquely) to a point of the
attractor, since fixing (i1, i2, . . .) where ij ∈ {1, . . . , d}, we have:

∞⋂
k=1

Ti1 ◦ · · · ◦ Tik(E) = {x} for some x ∈ Λ (4.3)

since the intersection of a nested sequence of compact sets whose di-
ameter tends to 0 equals a single point. Note that the resulting point
is actually independent of our choice of E (For instance, we could
always take E = Λ).

(4.3) is strongly indicative of an intimate relationship between Λ
and the symbolic space Σ = {1, . . . , d}N. Specifically, it implies that
we can code points x ∈ Λ by sequences i ∈ Σ via a surjective mapping
ψ : Σ→ Λ;

ψ(i) =
∞⋂
k=1

Ti1 ◦ · · · ◦ Tik(E)

Note that if E can be chosen such that the Ti(E)’s are disjoint, then
ψ will be injective too. An alternative representation of ψ is given
by taking E to be a single point, E = {y} (so we no longer have
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Ti(E) ⊂ E in general). Theorem (4.4) still guarantees that the iterates
T k({y}) converge to Λ, yielding:

ψ(i) = lim
k→∞

Ti1 ◦ · · · ◦ Tik(y) (4.4)

where we have switched from using sets and the Hausdorff metric to
points of Rn and the usual metric, since the two notions are equivalent
for singleton sets.

Going forward, we will almost exclusively be concerned with the
task of calculating the dimension of Λ, or rather dimensions, since
there is more than one type. We now survey the key definitions and
methods involved in such calculations.

Dimension Calculations 4.2.

Against ordinary intuition, there are multiple quantities we can as-
sociate with a set that might reasonably be called its dimension. Here,
we confine ourselves to just two: Hausdorff dimension and Minkowski
dimension. The former is probably of greatest theoretical interest but
it is also much harder to evaluate: a fact that will become all too clear
as we progress.

Definition 4.5. Let E ⊂ Rn be a Borel set. We define its Hausdorff
dimension to be

dimH(E) = inf{s : Hs(E) = 0} = sup{s : Hs(E) = +∞}

For a proof of the fact that the infimum and supremum above agree
- and so the definition makes sense - see [13] or [6].

Definition 4.6. Let E ⊂ Rn be non-empty and bounded. We define
its lower and upper Minkowski dimension, respectively, as

dimM(E) = limδ→0

logNδ(E)

− log δ

dimM(E) = limδ→0
logNδ(E)

− log δ

where Nδ is the least number of sets of diameter less than δ which can
cover E. If the two limits agree, we simply write dimM(E) and refer
to this quantity as the Minkowski dimension of E.

It is worthwhile noting that there are many options in defining Nδ

above, for instance we could take it be the least number of cubes of
side δ that cover E.
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Almost always, If you want to show a certain quantity - s - is the
Hausdorff dimension of a set then you have to give separate arguments
proving it is a lower and an upper bound. The upper bound is typically
- though not always - much easier to prove since it suffices to show
that the Hausdorff measure of your set is finite, which can be done by
constructing a δ-cover {Ui} for which the sums

∑
|Ui|s are bounded by

a constant independent of δ. A similar type of constructive argument
often works for the finding the Minkowski dimension.

For the Hausdorff lower bound, more advanced tools are needed.
The following lemma allows us to think of this task as equivalent
to constructing a finite Borel measure supported on the set that is
reasonably ‘spread out’.

Lemma 4.7. [Frostman’s lemma] Let E ∈ Rn be a Borel set. Then
Ht(E) > 0 if and only if there exists a mass distribution µ on E such
that

µ(B(x, r)) ≤ rt for all x ∈ Rn and all r > 0

Whilst this lemma is conceptually useful, we omit the proof since
we do not require its direct use. We do prove a related result that
weakens the above condition that the measure of all balls not be too
great compared to their diameter. instead, it asks that, asymptot-
ically, the measure of a ball never becomes too large relative to its
diameter.

Proposition 4.8. Let µ be a mass distribution on Rn, E ⊂ Rn a
Borel set and let 0 < c < +∞. If

limr→0
µ(B(x, r))

rt
< c for all x ∈ E (4.5)

then Ht(E) ≥ µ(E)/c and so dimH(E) ≥ t.

Proof. Let δ > 0. Consider

Eδ = {x ∈ E : µ(B(x, r)) < crt for all 0 < r ≤ δ}

Note that for δ′ ≤ δ we have the inclusion: Eδ ⊂ Eδ′ . Moreover,
as δ tends to 0, our set ‘tends’ to E. A standard measure-theoretic
argument using intersections show that limδ→0 µ(Eδ) = µ(E).

Take {Ui} to be a cover of E such that |Ui| < δ for all i. This will
also be a cover for Eδ. Let I be an index set for those elements of
the cover that intersect Eδ. For each i ∈ I, choose xi ∈ Ui ∩ Eδ, then
Ui ⊂ B(xi, |Ui|) and so

µ(Ui) ≤ µ(B(xi, |Ui|)) < c|Ui|t
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Hence,

µ(Eδ) ≤
∑
i∈I

µ(B(xi, |Ui|)) ≤ c
∑
i∈I

|Ui|t

This holds for any δ-cover {Ui} and so taking infimums gives

µ(Eδ) ≤ cHt
δ(E) ≤ cHt(E)

Taking the limit δ → 0 gives the result.

Another way of viewing (4.5) is that the density of µ as measured
by t is never too great. Most the methods presented in this paper for
lower bounding Hausdorff dimension are either equivalent or strongly
related to this notion of bounding the density of a measure. A small
observation is that in (4.5), it is enough to assume the limit holds for
all points belonging to a set of non-zero measure. This observation
turns out to be of critical importance since it enables us to use the
ergodic theorem to help evaluate the limit. Why is this the case? First
we recall the definition of ergodicity and then the theorem.

Definition 4.9. Let (X,X , µ) be a measure space. We say µ is in-
variant under a measurable transformation T : X → X if for all
E ∈ X :

µ(T−1(E)) = µ(E)

Furthermore, we say µ is ergodic with respect to T if for any E ∈ X

T−1(E) = E =⇒ µ(E) ∈ {0, 1}

Theorem 4.10 (Birkhoff ergodic theorem). Let (X,X , µ) be a mea-
sure space and T a transformation on the space. Suppose µ is invariant
and ergodic with respect to T . Then for any f ∈ L1(X,X , µ),

lim
k→∞

1

k

k−1∑
m=0

f(Tm(x)) =

∫
fdµ for µ− almost every x ∈ X

For further details on invariance, ergodicity and a proof of the
above theorem, see chapter 6 of [4]. How this theorem helps is not
immediately clear; indeed, its utility will probably only be fully trans-
parent when applied in later sections. The intuition however, is that
so long as we can find a pair µ and T satisfying invariance and er-
godicity, then by a suitable choice of f the ergodic theorem provides
information about asymptotic properties of our system on a set of pos-
itive measure E. We use this information to aid us in bounding the
density of µ upon E, which is sufficient to lower bound the dimension
of the whole space. An important example of such a pair µ and T are
found in the next proposition
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Proposition 4.11. Let (Σ,B, µp) be the measure space where Σ =
{1, . . . d}N and µp is a Bernoulli measure. Then µp is invariant and
ergodic with respect to the shift map σ : Σ→ Σ given by

σ(i1, i2, i3, . . .) = (i2, i3, i4, . . .)

A proof of this can be found in [15]. Let us refocus our attention on
iterated function systems. One case in which we can give a reasonably
thorough dimensional analysis is when our IFS consists of similarities,
in which case we refer to the resulting attractor as a self-similar set.
Before presenting the main theorem on this topic, we state a couple
of definitions.

Definition 4.12. We say an IFS F = {Ti}di=1 with attractor Λ satis-
fies the strong separation condition if the following union is disjoint

d⋃
i=1

Ti(Λ) = Λ (4.6)

As mentioned previously: if we have strong separation then we
benefit from our coding map ψ : Σ → Λ being injective. However,
it restricts us to analysing a narrow class of attractors that are, in
particular, totally disconnected. A softer condition is the following.

Definition 4.13. We say an IFS F = {Ti}di=1 with attractor Λ satis-
fies the open set condition if there exists E ⊂ Rn non-empty, bounded
and open such that the following union is disjoint

d⋃
i=1

Ti(E) ⊂ E

the open set condition essentially says that whilst the Ti(Λ)’s in (4.6)
need not be disjoint, they cannot overlap very much. Assuming this
condition, we present perhaps the most fundamental theorem in the
study of IFS’s.

Theorem 4.14. Let F = {Ti}di=1 be an IFS of similarities that satisfy
the open set condition and have attractor Λ. If Ti has similarity ratio
ri and s ≥ 0 is the unique solution to

d∑
i=1

rsi = 1

then 0 < Hs(Λ) < +∞ and dimH(Λ) = dimM(Λ) = s
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For many ‘everyday’ fractals, including cantor sets, the above for-
mula gives a quick solution to the problem of finding its dimension.
However, there are obvious restrictions to its scope: we require the
open set condition and the maps to be similarities. Our foremost task
in this paper will be to address the second restriction by considering
more general classes of mappings.

Definition 4.15. A map T : Rn → Rn is called an affine transforma-
tion if it is of the form

T (x) = A(x) + b (4.7)

where A is a linear transformation and thus representable by a n by
n matrix.

We note that one can show that a similarity transformation is
also of the form seen in (4.7), however its linear part must contract
uniformly in all directions, whilst an affine transformation is not so
restricted. For instance, affinities can map balls to ellipsoids and cubes
to parallelepipeds.

We call the attractor of an IFS consisting of affinities a self-affine
set. It will be our goal to determine if a result analogous to theorem
4.14 can be obtained for self-affine sets. In section 5 we present a
paper of McMullen which computes the Hausdorff and Minkowski di-
mension for a specific class of self-affine sets. The formulae arrived at
are delicate and, in general, differ for the two dimensions, indicating
that nothing as simple as theorem 4.14 will be possible for self-affine
sets. Indeed, whilst a generic result due to Falconer does exist and we
present it in section 6, it only holds for ‘almost all’ self-affine sets and
the formula provided is not very computationally tractable.

In section 7 we consider a further generalisation to IFS’s consisting
of non-linear transformations. That such a generalisation is possible
is rather remarkable and the results we present there are part of stim-
ulating body of research known as the Thermodynamic Formalism.
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5 Bedford-McMullen carpets

Bedford-McMullen carpets are a special class of planar self-affine sets
whose associated affinity mappings have different rates of contrac-
tion in orthogonal directions. We present rigorous calculations for the
Hausdorff and Minkowski dimensions of these carpets - which typically
differ - following the exposition of McMullen [11]. We begin, however,
with an illustrative example.

Example 5.1. Consider the IFS given by F = {Ti(x) = T (x) +ai}3
i=1

where:

T (x) =

(
1
3

0
0 1

2

)(
x
y

)
, a1 =

(
0
0

)
, a2 =

(
1
3
1
2

)
, a3 =

(
2
3

0

)
and let Λ ⊂ R2 be the unique attractor. In figure 2 there is a step-by-
step construction of Λ, beginning with ∪3

i=1Ti(E) where E is the unit
square. Note that since the horizontal rate of contraction is larger
than the vertical, the rectangles become (in relative terms) thinner
and longer at successive stages.

Figure 2: From top to bottom: The level-1 grid, Level-2 grid and Attractor
of a 2× 3 Bedford-McMullen carpet

If we want to estimate the Hausdorff dimension of Λ, it is a good
idea to first try and find an economical cover of it. Perhaps the ‘nat-
ural’ choice of cover is the rectangles seen in the construction i.e 3k

rectangles of diameter
√

3−2k + 2−2k. However, a good cover of rect-
angles will ‘spend’ as little diameter as possible to ‘purchase’ as much
area as possible, which is to say that we wish to maximise:

area

diameter
=

(mn)−k√
m−2k + n−2k

It is a simple optimisation problem to show that this ratio is max-
imised when n = m i.e when our cover consists of squares. In the
proof to follow we make use of approximate squares: rectangles that
are close to optimal in the above sense but are more convenient since
they slot into the grid-structure seen in figure 2.

Now we can see how such a choice of cover affects what mass dis-
tribution we should put on the set. If we make the naive choice of
equal distribution of mass at each stage we end up with, at stage k,
3k rectangles of mass 3−k each. since the bottom row at each stage
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contains 2k more rectangles than the topmost row, the approximate
squares of our cover in the bottom row will tend to have much larger
mass than the square covering the top row. This means the mass of
our cover will be highly concentrated, which is of no use in finding the
Hausdorff dimension. Thus, for a correct solution we expect a distri-
bution that assigns mass according to the number of other rectangles
in the same row, with less weight given to crowded rows.

Note that all this intuition matches the formal methods given in
Frostman’s lemma (4.7) and the related lemma concerning the density
of a measure (4.8). The only difference is that it is more convenient
for our purposes to talk about approximate squares rather than balls.
From the perspective of geometric measure theory, squares and balls
are almost always substitutable and so this difference is irrelevant.

Definition 5.2. For n ≥ m, let Λ be the attractor of the IFS:

Ti(x) =

(
1/n 0
0 1/m

)(
x
y

)
+

(
xi/n
yi/m

)
(5.1)

where (xi, yi) ∈ D ⊂ {0, . . . , n} × {0, . . . ,m} is some collection of
integer pairs. An explicit representation of Λ is in terms of n-ary and
m-ary expansions:

Λ =

{(
∞∑
i=1

xi
ni
,
∞∑
i=1

yi
mi

)
: (xi, yi) ∈ D

}

The following quantities are critical to later calculations:

d = |D|, t = |πy(D)| and tj = |{xi : (xi, j) ∈ D}| (5.2)

where πy is the projection onto the y-axis and 0 ≤ j ≤ m − 1. It is
useful to have a pictorial representation of these parameters in mind:
visualise an n ×m grid like that in the first stage of construction in
figure 2, with rectangles shaded according to some IFS as above (we
call this the 1-level grid and further stages kth-level grids). Then D is
a sort of grid-reference to these shaded blocks, d the total number of
shaded blocks, t the number of non-empty rows and the tj the number
of blocks shaded in the jth row.

Finally, we introduce the notion of an approximate squares as dis-
cussed previously, which have the convenient property that if any two
such ‘squares’ intersect they either share a boundary or one is nested
in the other.

Sk(p, q) =

[
p

nl
,
p+ 1

nl

]
×
[
q

mk
,
q + 1

mk

]
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where l = bk logn(m)c. l is the unique integer such that :

m−k ≤n−l ≤ nm−k

=⇒ m−k
√

2 ≤ diam(Sk(p, q)) ≤ m−k
√
n2 + 1 (5.3)

Our calculations will rely on covers C = {Sk(p, q)} of approximate
squares that may vary in size. the numbers Nk = |{Sk′(p, q) ∈ C :
k′ = k}| will be needed for covering arguments.

Theorem 5.3. (upper Minkowski dimension) let d and t be as in
(5.2). Then:

dimM(Λ) = logn(
d

t
) + logm(t)

Proof. In order to evaluate the limit in the definition of Minkowski
dimension, it suffices to consider the sequence δk = m−k. See [6] for
a proof of this basic fact. We set N (m−k) to be the least number of
squares of side m−k needed to cover Λ, so:

dimM(Λ) = lim
k→∞

log(N (m−k)

− log(m−k)
(5.4)

Form a sequence of covers, each containing approximate squares
of the same size: Ck = {Sk(p, q)} taken over all (p, q) for which
Sk(p, q) ∩ Λ 6= ∅. Therefore, |Ck| = Nk is equal to number of ‘squares’
that intersect Λ. This number can be given more explicitly with pa-
rameters in (5.2) since Nk = the number of ways to chose sequences
(xi)

l
i=1, (yi)

k
i=1 such that:

(xi, yi) ∈ D for i = 1, . . . , l (5.5)

and yi ∈ πy(D) for i = l + 1, . . . k (5.6)

To see why this is true geometrically, subdivide the unit square into
an lth-level grid with thin rectangles shaded like in figure 2. The only
approximate squares in Ck to intersect Λ are contained inside such
shaded rectangles and a choice of one rectangle corresponds to (5.5).
Now that we’ve picked a rectangle, say Ti1 ◦ · · · ◦ Til(E), subdivide it
into a nk−l×mk−l grid and re-shade according to the k-level rectangles
contained inside it. Note that the mk−l rows in this grid are precisely
approximate squares. Choosing a row that contains one of the newly
shaded rectangles corresponds to (5.6). Hence,

Nk = |D|l |πy(D)|k−l = dltk−l =

(
d

t

)l
tk (5.7)
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We wish to replace N (m−k) with Nk in (5.4). To do so, we make use
of:

Nk

9
≤ N (m−k) ≤ nNk

To obtain these bounds, see that 9 approximate squares (which, at
minimum, are m−k × m−k squares) is plenty sufficient to cover one
m−k ×m−k square. Note that approximate squares cannot be placed
in arbitrary positions, otherwise 1, not 9, would suffice. Conversely,
you can always cover an approximate square with n actual squares -
which we may position as we please.

Therefore we can bound on both sides the limit in (5.4) and since
constants do not contribute we arrive at:

dimM(Λ) = lim
k→∞

log(Nk)

− log(m−k)
= lim

k→∞

l log(d/t) + k log(t)

k log(m)

= logm(
d

t
) lim
k→∞

l

k
+ logm(t)

= logm(
d

t
) logn(m) + logm(t)

= logn(
d

t
) + logm(t).

where we used:

k logn(m)− 1

k
≤bk logn(m)c

k
≤ k logn(m)

k

=⇒ lim
k→∞

l

k
= logn(m). (5.8)

Now before stating and proving an analogous result for Hausdorff
dimension, we need some notation and a few lemma that enable us
to only worry about certain classes of coverings when evaluating the
Hausdorff dimension.

Lemma 5.4. Let r ≥ 0 and C denote a cover of approximate squares.
Then:

Hr(Λ) = 0⇐⇒ ∀ε > 0 ∃C such that
∞∑
k=1

Nkm
−kr < ε (5.9)
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Proof. The m−k can be replaced by diam(Sk(p, q)) by appealing to
(5.3) which just states that diam(Sk(p, q)) ≈ m−k. This renders the
backwards implication obvious since it means we can find covers that
make the sum in the definition of Hausdorff measure arbitrarily small
and so the infimum over all covers must be 0.

For the forwards implication, let ε > 0. By assumption there exists
a δ-cover {Ei} of Λ such that

∑
|Ei|r < ε/9mn2. Each Ei of this cover

can be covered by at most 9mn2 approximate squares with diameter
less than |Ei| (this precise bound is rather irrelevant - the point is that
a constant works for all i). Thus:∑

Nk|(Sk(p, q)|r ≤ 9mn2
∑
|Ei|r < ε

This gives us the result.

It will be convenient to make use of symbolic coding as discussed
in Section 4 using the space: Σ = {0, . . . , d}N. It is a standard tech-
nique to translate the problem of finding the Hausdorff dimension to
a sequence space through the surjective mapping:

ψ : Σ→ Λ ; i 7→

(
∞∑
j=1

xij
nj
,
∞∑
j=1

yij
mj

)

and placing a probability measure on Σ.
To do this, we will need ‘lifted approximate squares’: sets S̃k(p, q) ⊂

Σ whose images are roughly Sk(p, q). More precisely, define:

Ak(p, q) =

{
ik :

l∑
j=1

xij
nj

=
p

nl
and

k∑
j=1

yij
mj

=
q

mk

}

and S̃k(p, q) = Ak(p, q)×
∞∏
k+1

{1, . . . d}

Alternatively, adopting the convention that for finite sequences ψ(ik) =
ψ(ik, 0) (where 0 represents an infinite sequence of zeros) we may com-

pactly write S̃k(p, q) using projections onto the axes:

S̃k(p, q) =
{

i : πx(ψ(il)) =
p

nl
and πy(ψ(ik)) =

q

mk

}
It follows immediately that:

ψ(S̃k(p, q)) = Λ ∩
([

p

nl
,
p+ 1

nl

]
×
[
q

mk
,
q + 1

mk

])
= Λ ∩ Sk(p, q)

(5.10)
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Unfortunately, the preimage of an approximate square isn’t exactly a
lifted ‘square’ since the mapping ψ isn’t injective. In particular, at
least one coordinate of every point on the boundary of a ‘square’ has
two (m or n-ary) expansions. So if a boundary point belongs to Λ,
then it is possible that there exists distinct sequences i, j ∈ Σ such
that ψ(i) = ψ(j) and only j belongs to S̃k(p, q). If this is the case
however, then for α, β not both zero:

i ∈
⋃

α,β∈{−1,0,1}

S̃k(p+ α, q + β) (5.11)

(note: some of these sets may be empty) This simply follows from
(5.10) since only neighbouring approximate squares have non-empty
intersection. Together, (5.10) and (5.11) say:

S̃k(p, q) ⊂ ψ−1(Sk(p, q)) ⊂
⋃

α,β∈{−1,0,1}

S̃k(p+ α, q + β) (5.12)

This relationship allows us to formulate a version of lemma (5.4)
for lifted ‘squares’:

Lemma 5.5. Let r ≥ 0 and C̃ denote a cover of Σ by lifted ‘squares’
where Ñk is the number of lifts in the cover for a given k. Then

Hr(Λ) = 0⇐⇒ ∀ε > 0 ∃C̃ such that
∞∑
k=1

Ñkm
−kr < ε

Proof. Assume Hr(Λ) = 0. Let ε > 0. By (5.4) we can find a cover C
of approximate squares such that

∑
Nkm

−kr < ε/9. Since:⋃
C

ψ−1(Sk(p, q)) = Σ

and we may cover each element of the union by 9 lifted ‘squares’ using
(5.12) there exists a cover C̃ such that

∞∑
k=1

Ñkm
−kr =

∞∑
k=1

9Nkm
−kr < ε

Now we show the backwards implication, again through lemma 5.4.
Let ε > 0 and take a cover C̃ such that

∑
Ñkm

−kr < ε. By appeal
to (5.12) and the fact that ψ is surjective, there exists a cover by

approximate squares of the same size i.e Nk = Ñk. The result is now
obvious.
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Now we present the main theorem of this section. For the upper
bound we use lemma (5.4) and a covering argument. This deviates
slightly from McMullen’s proof, which is more measure-theoretic in
nature. For the lower bound we use lemma (5.5) and construct a
Bernoulli measure on Σ.

Theorem 5.6. (Hausdorff dimension) Let tj ∈ {1, . . . ,m} as in (5.2)
and Λ as before. Then:

s = dimH(Λ) = logm

(
m−1∑
j=0

t
logn(m)
j

)

Proof.

Upper bound
For each ik ∈ Σ∗k associate a sequence aik = ai1ai2 · · · aik where ai

equals the number of elements of D that have same second coordinate
as (xi, yi) i.e ai = tyi . Define a function:

fk : Σ→ R; i 7→

[
a

logn(m)
ik

ail

] 1
k

=

[
(ai1ai2 · · · aik)logn(m)

ai1ai2 · · · ail

] 1
k

(5.13)

These fk’s will play an important role in obtaining both the lower and
upper bounds for the dimension. Firstly, we show that for any i ∈ Σ:

lim
k→∞

fk(i) ≥ 1 (5.14)

and use this to obtain an upper bound. Write fk(i) = hk(i)gk(i)
lognm

where:

gk(i) =
a

1/k
ik

a
1/l
il

hk(i) = (ail)
logn(m)/l−1/k (5.15)

It follows straight from the definition of the ai’s that ai ≤ n. There-
fore,

1 ≤ hk(i) ≤ nlogn(m)−l/k → 1 as k →∞

for all i ∈ Σ by (5.8). Hence, to prove (5.14) we need to show
limk→∞gk(i) ≥ 1 for all i ∈ Σ. To do this, fix i ∈ Σ and consider

the sequence γk = a
1/k
ik

. Its elements are always greater than 1, so it is
bounded away from 0, which is actually the only fact we need to use.
Suppose for contradiction that:
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limk→∞
γk
γl
< 1

So there exists ρ ∈ R such that for sufficiently large k ∈ N,

γk
γl
< ρ < 1 (5.16)

Pick k1 to satisfy the above inequality and write k0 for the asso-
ciated l. Construct an increasing sequence of integers recursively via
the relation:

kj
logn(m)

≤ kj+1 <
kj + 1

logn(m)

There will typically be multiple integers satisfying this relation, any
choice will suffice since we always have: kj = bkj+1 logn(m)c. So by
(5.16):

γkj+1
< ργkj (5.17)

holds for all j. Now we show that limk→∞ γkj = 0. Let ε > 0. Pick
j ∈ N such that ρj < ε/γk0 . By repeated application of (5.17) we get:

γkj < ργkj−1
< ρ2γkj−2

< · · · < ρjγk0 < ε

So the limit is as claimed. However, this is a contradiction since, as
previously mentioned, the gammas are bounded away from 0. There-
fore, limk→∞gk(i) ≥ 1, and so we have completely justified that

lim
k→∞

fk(i) ≥ 1

Using this property of f, we are finally in a position to construct a
covering set C such that for r > s,

∑
Nkm

−kr is arbitrarily small,
which by lemma 5.4 will yield dimH(Λ) ≤ s. Unlike in the Minkowski
dimension argument, our cover will need to contain elements of varying
sizes, so we build C from Ck, containing all k-level approximate squares
that intersect Λ and satisfy a condition given below. The condition
ensures that either every ‘square’ in a k-level row is admitted or none
of that row are.

So, let r > s and set δ = (r − s)/2. Let ε > 0. Define a sequence
of sets:

Ik = {ik :
(ai1ai2 · · · aik)logn(m)

ai1ai2 · · · ail
> m−δk} (5.18)
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each associated to rows of the k-level grid that have non-empty inter-
section with Λ via:

Yk = {(yi1 , . . . , yik) : ik ∈ Ik} ⊂ {0, . . . ,m− 1}k

We admit into Ck rows of approximate squares indexed by an element
of Yk, where each ‘square’ must intersect Λ. One can see that for
any i ∈ Σ, there exists infinitely many k for which ik ∈ Ik. This
follows quickly from (5.14) which tells us that, since m−δ < 1, there
are infinitely many k satisfying:

fk(i) =

[
(ai1ai2 · · · aik)logn(m)

ai1ai2 · · · ail

]1/k

> m−δ

Raising both sides to the power k gives us the condition in (5.18).
Since i encodes a point of Λ, this means that every point of Λ is
contained in infinitely many Ck, which is important since it means
that Λ is covered by:

C =
⋃
k≥K

Ck for any K ∈ N

Pick K ∈ N such that

m−δK < ε(1−m−δ) (5.19)

and fix a cover C as above. To calculate the number of ‘squares’ in an
arbitrary Ck, we first find the number of ‘squares’ in some fixed row
of the k-level grid, using:

# of ‘squares’ in row =
# of k-level rectangles in row

# of rectangles in each ‘square’
(5.20)

It follows by induction that the numerator is ai1ai2 · · · aik . Base case:
A choice of yi1 corresponds to a choice of row in the 1-level grid con-
taining ai1 rectangles. Now assume a row of the (k-1)th-level grid
has ai1ai2 · · · aik−1

rectangles. Subdivide to get the kth level grid and
choose the yikth row inside the previous row. This contains aik rect-
angles for each rectangle in the previous row. So in total it contains
ai1ai2 · · · aik rectangles. This proves the statement.

For the denominator, note that a k-level ‘square’ is contained inside
and has the same width as an l-level rectangle. By the same reasoning
as before, an l-level rectangle will contain ail+1

· · · aik k-level rectangles
inside our row. hence, (5.20) implies that the number of approximate
squares in a row is ai1ai2 · · · ail . To get Nk all we do is sum over the
rows indexed by Yk. Therefore:
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∑
k≥K

Nkm
−rk =

∑
k≥K

Nkm
−(s+2δ)k

=
∑
k≥K

∑
Yk

ai1ai2 · · · ailm−(s+2δ)k

By (5.18) <
∑
k≥K

∑
Yk

(ai1ai2 · · · aik)logn(m)mδkm−(s+2δ)k

<
∑
k≥K

∑
{0,...,m−1}k

(a
logn(m)
i1

m−(s+δ)) · · · (alogn(m)
ik

m−(s+δ))

=
∑
k≥K

(
m−1∑
i=0

a
logn(m)
i m−(s+δ)

)k

By the definition of s, m−s =
(∑m−1

i=0 a
logn(m)
i

)−1

so we get cancellation

in the above sum, yielding:∑
k≥K

Nkm
−rk <

∑
k≥K

m−δk =
m−δK

1−m−δ
< ε

By (5.19). Therefore, by lemma 5.4, Hr(Λ) = 0 and so dimH(Λ) ≤ s.

Lower bound
To obtain the reverse inequality we must make a clever choice of

mass distribution to place on Σ such that the mass of a lifted ‘square’ is
in some sense proportional to the size of its corresponding approximate
square. We achieve this by specifying a probability vector (b1, . . . , bd)
associated to Σ, giving a Bernoulli measure. So, let us choose:

bi =
a

logn(m)−1
i

ms

recall that if j = yi then ai = tj and so:

d∑
i=1

a
logn(m)−1
i =

m−1∑
j=0

∑
i: yi=j

a
logn(m)−1
i =

m−1∑
j=0

∑
i: yi=j

t
logn(m)−1
j

=
m−1∑
j=0

t
logn(m)
j = ms
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Therefore the bi defined above really do sum to 1 and so form a prob-
ability vector. It follows from the Caratheodory extension theorem -
as noted in (3.9)- that a Bernoulli measure is now uniquely specified
by the measure it assigns to cylinder sets Ck(ik) ⊂ Σ:

µ(Ck(ik)) = bi1 · · · bik
Note that ψ(Ck(ik)) is a k-level rectangle whose measure is decreasing
in the corresponding aik : that is, the more crowded the row it occupies,
the less measure it is assigned. This matches the intuition expressed
in the 2× 3 carpet example.

We would like to know the measure of lifted ‘squares’ - S̃k(p, q) -
and so we seek a relationship between lifted ‘squares’ and cylinders.
Since a cylinder Ck(ik) encodes a k-level rectangle, of which there are
ail+1
· · · aik inside a k-level ‘square’, we expect the union over all those

cylinders to equal a lifted ‘square’. This can be seen directly from
the Ak(p, q) in the definition of S̃k(p, q): they contain finite sequences
with the first l terms fixed and for the last k-l terms, the quantity yij
is fixed for each j, meaning there are aij choices for each ij. Hence,

S̃k(p, q) =
⋃

Ak(p,q)

Ck(ik) where |Ak(p, q)| = ail+1
· · · aik

where the union is disjoint. Since the finite sequence (ai1 , . . . aik) is

fixed with a choice of S̃k(p, q) - it doesn’t vary depending on how we
choose the last k-l terms - each cylinder in the above union has the
same measure. So we get:

µ(S̃k(p, q)) =
∑
Ak(p,q)

µ(Ck(ik)) = (ail+1
· · · aik)

(ai1 · · · aik)logn(m)

ail+1
· · · aik

m−sk

Recalling the definition of the functions fk above, this yields:

µ(S̃k(p, q)) = (fk(i)m
−s)k (5.21)

for any i ∈ Σ such that ik < i. Now we show that the measure of the
lifted ‘squares’ is almost always equal to the size of the ‘squares’ as
measured by m−sk, by showing:

lim
k→∞

fk(i) = 1 for µ− almost every i ∈ Σ (5.22)

Recall (5.15) where fk was written as the product of two functions
gk and hk and the latter function equalled 1 in the limit. So to show
(5.22) we only need to show the same holds for

gk(i) =
(ai1 · · · aik)1/k

(ai1 · · · ail)1/l
(5.23)
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To show this, we use the Birkhoff ergodic theorem. Recall that in
proposition (4.11) it states that any Bernoulli measure is ergodic with
respect to the shift map σ : Σ→ Σ. Note the relationship:

(ai1 · · · aik)
1
k = exp(

1

k

k−1∑
m=0

f(σmi))

where f(i) = log |ai1|. Clearly, f ∈ L1(µ) and so we apply the ergodic
theorem

lim
k→∞

1

k

k−1∑
m=0

f(σmi) =

∫
fdµ µ− almost everywhere

writing α =
∫
f dµ we see that

lim
k→∞

gk(i) =
eα

eα
= 1 µ− almost everywhere

We can use the fact that the maps fk converge almost everywhere
to 1 in order to find a set of positive measure inside which lifted
‘squares’ have measure bounded by their size, which is exactly the
property we desire to find a lower bound for the dimension.

Let r < s. We want to show that Hr(Λ) > 0, which by lemma

(5.5) is equivalent to finding an ε such that
∑
Ñkm

−kr ≥ ε for any C̃
- a cover by lifted squares of Σ. Define a sequence of sets

EK = {i ∈ Σ : fk(i) < ms−r ∀k ≥ K}

It is not hard to see that EK ⊂ EK+1 for all K and:

{i ∈ Σ : lim
k→∞

fk(i) = 1} ⊂
⋃
K

EK

Since if i belongs to the set on the left then simply by the definition
of a limit there exists K ∈ N such that for all k larger than K,
fk(i) < 1 + δ < ms−r (picking δ to be sufficiently small). But, by
(5.22), the left-hand side set has measure 1 and so:

1 ≤
∑
K

µ(EK)

Meaning we can pick K ∈ N such that µ(EK) 6= 0 (In fact, we can
find a set with measure arbitrarily close to 1, but this will suffice).

Now, choose ε = min{µ(EK),m−rK} and let C̃ = {S̃k(p, q)} be a cover
of Σ (note that k is not fixed; the cover can contain lifted ‘squares’ of
varying sizes).
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We may assume that for k < K, Ñk = 0 since otherwise we have:

∞∑
k=1

Ñkm
−rk > m−rK ≥ ε

and the argument is complete. With this assumption in mind, we
consider only those S̃k(p, q) with k ≥ K and S̃k(p, q) ∩ EK 6= ∅. Let
I = ∪Ik′ be an index set for such lifted ‘squares’, where each Ik′ indexes
those S̃k(p, q) for which k = k′ and so |Ik′ | = Nk′ . Since EK ⊂ Σ is

covered by C̃, we have:

EK = EK ∩

(⋃
I

S̃k(p, q)

)
(5.24)

So we can upper bound the measure of EK by bounding that of each
such S̃k(p, q). For i ∈ S̃k(p, q) ∩ EK we have (by (5.21)):

µ(S̃k(p, q)) = (fk(i)m
−s)k < (ms−rm−s)k = m−rk (5.25)

where the inequality follows from the definition of the set EK . Hence,

ε ≤ µ(EK) = µ(EK ∩

(⋃
I

S̃k(p, q)

)

≤ µ(
⋃
I

S̃k(p, q))

≤
∞∑
k=1

∑
Ik

µ(S̃k(p, q))

<

∞∑
k=1

∑
Ik

m−rk <

∞∑
k=1

Ñkm
−rk

As stated earlier, by lemma 5.5 we have dimH(F ) ≥ s.

Remark 5.7. 1) The iterated function systems studied above satisfy
the Open Set Condition, defined in (4.13), since the images of the
open unit square are disjoint and lie within it. Thus when n = m and
so our mappings are self-similarities, the Minkowski and Hausdorff
dimensions should, by theorem (4.14), equal the unique solution s
to
∑d

i=1 n
−s = 1. This is easily verified. Unfortunately, The two

formulae are not equal in general, demonstrating that even in the a
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priori ‘nice’ setting provided by the OSC, self-affine sets are not all
that well-behaved. There is one other case - apart from the self-similar
one - where the two dimensions agree: when there exists a constant c
such that each tj is either c or 0. This is because if

logn

(
d

t

)
+ logm(t) = logm

(
m−1∑
j=0

t
logn(m)
j

)

then, noting that logn(d
t
) = logn(m) logm(d

t
), we have

t

(
d

t

)logn(m)

=
m−1∑
j=0

t
logn(m)
j ⇔

(
1

t

m−1∑
j=0

tj

)logn(m)

=
1

t

m−1∑
j=0

t
logn(m)
j

⇔ 1

t

m−1∑
j=0

tj =

(
1

t

m−1∑
j=0

t
logn(m)
j

) 1
logn(m)

Since the sums are actually over t terms (the other m− t terms being
0) we can see that both sides represent generalised means: the left side
with exponent 1 and the right with exponent logn(m). It is a fact -
provable via Jensen’s inequality - that such means are non-decreasing
in their exponents and there is equality between two means if and only
if there exists a constant c such that tj is c or 0.

2) Notice that the arguments we used to find s = dimH(Λ) say nothing
about the attractors Hausdorff measure Hs(Λ). It turns out that if we
assume one of the conditions presented above which ensure dimH(Λ) =
dimM(Λ), then the Hausdorff measure is finite and non-zero. However,
it is a result of Peres [12] that in all other cases the Hausdorff measure
is infinite and Λ is not even a σ-finite measure space with respect toHs.
Recalling the fact that, by theorem (4.14), self-similar sets satisfying
the open set condition must have non-zero finite measure, we gain
an appreciation for just how much more intricate and pathological
self-affine sets are compared to self-similar ones.
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6 The dimension of generic self-affine sets

The previous section painted a picture of just how difficult self-affine
sets are to analyse even when we refine ourselves to a very narrow class
of such sets. It may be something of a surprise then, that anything
meaningful could be said in generality and yet that is exactly the topic
to which we now turn. The majority of this section will be devoted
to presenting a paper of Falconer’s [5] but first, we develop some new
techniques for calculating the Hausdorff dimension.

Potential-theoretic techniques 6.1.

In order to attain dimension estimates (4.8) asks us to uniformly
bound the upper density of a measure over the whole space which
could be a very difficult task. Remarkably, mathematical formulations
of ideas from physics can be used to often simplify the task to a much
more familiar one: proving that a certain integral taken with respect
to the measure is finite. The following definition and theorem can be
found in Falconer [6].

Definition 6.1. Let t ≥ 0 , x ∈ Rn and µ a mass distribution on Rn.
The t-potential of ν at the point x is

φt(x) =

∫
Rn

dν(y)

|x− y|t

The t-energy of ν is

It(ν) =

∫
Rn
φt(x)dν(x) =

∫
Rn

∫
Rn

dν(y)dν(x)

|x− y|t

These definitions can be put to work immediately in proving an
incredibly useful theorem in fractal geometry.

Theorem 6.2. Let Λ be a subset of Rn. If there exists a mass distri-
bution ν supported on Λ such that It(ν) < ∞ then Ht(Λ) = ∞ and
so dimH(Λ) ≥ t.

Proof. Motivated by proposition (4.8), We show that if the t-energy is
to be finite then ν must have zero density almost everywhere. Roughly
speaking, this is because the integrand of the t-potential blows up as
y approaches x and so the measure of a small ball around x needs to
decrease sufficiently fast for almost all x so that It(ν) remains finite.
Define

G = {x ∈ Λ : limr→0
ν(B(x, r))

rt
> 0}
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For any x ∈ G, we can find a sequence of balls B(x,ri) such that
ri → 0 and their density is uniformly bounded below. that is, there
exists ε such that

ν(B(x, ri))

rti
≥ ε

Now ν({x}) = 0 since It(ν) 6= +∞ and so by the continuity of ν we
can find balls B(x, qi) such that

ν(B(x, qi)) ≤
3

4
rtiε

=⇒ ν(B(x, ri)\B(x, qi)) ≥
1

4
rtiε

By passing to subsequences if need be, we may assume ri+1 < qi so that
the annuli Ai = B(x, ri)\B(x, qi) are disjoint. Pictorially, imagine an
infinite number of concentric circles of decreasing size centred on x
with every other annulus shaded. These shaded sets are the Ai’s.

Note that |x− y|−t ≥ r−ti for y ∈ Ai and so∫
Rn

dν

|x− y|t
≥

∞∑
k=1

∫
Ai

dν

|x− y|t

≥
∞∑
k=1

ν(Ai) inf
y∈Ai
{|x− y|t}

≥
∞∑
k=1

1

4
εrtir

−t
i

= +∞

and this holds for all x ∈ G. But It(ν) < +∞ and so∫
Rn

dν

|x− y|t
<∞ for ν almost all x ∈ Rn

Therefore, ν(G) = 0. By the definition of G, we have, for any c ∈ R,

limr→0
ν(B(x, r))

rt
= 0 < c for all x ∈ Λ\G

By proposition (4.8), this implies

Ht(Λ) ≥ Ht(Λ\G) ≥ ν(Λ\G)

c
≥ ν(Λ)− ν(G)

c
≥ ν(Λ)

c

and since ν(Λ) > 0 and c > 0 was arbitrary, it follows that Ht(Λ) =
+∞ and so dimH(Λ) ≥ t.
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If we instead consider a family of sets Λ(θ) upon which we can
place a family of mass distributions νθ, then an easy corollary of the
previous theorem is

Corollary 6.3. If there exists a t ≥ 0 such that∫
It(νθ)dθ =

∫ ∫ ∫
dνθ(x)dνθ(y)dθ

|x− y|t
<∞

Then dimH(Λ(θ)) ≥ t for almost all θ.

Of course, for this to be rigorous we should specify a suitable pa-
rameter space and a measure on it. For our purposes it can be assumed
to be euclidean space with Lebesgue measure.

In the setting of iterated function systems where Λ is an attractor
and so is naturally coded by a map ψ : Σ → Λ, it is common to
first construct a mass distribution µ on the sequence space and then
translate back down to Λ via the image measure:

ν(A) = µ(ψ−1(A)) A ∈ B

where ψ is continuous and so the pre-image of a measurable set is
measurable. The following proposition, which can be found in Mattila
[?], allows us to find the t-energy of ν by evaluating integrals with
respect to µ. This gives us the potential to apply theorem (6.2) to
image measures.

Proposition 6.4. Let g : Rn → Rn be a non-negative measurable
function. Let ν, µ and ψ be as above. Then:∫

Rn
g dν =

∫
Σ

g ◦ ψ dµ

Proof. f = ϕ ◦ ψ and g are non-negative measurable functions and
it well-known that such functions may be approximated by increasing
simple functions in the following way:

fk =
k2k∑
j=0

j

2k
χ

Uj,k
, gk =

k2k∑
j=0

j

2k
χ

Vj,k

Uj,k =


{
i : g(ψ(i)) ∈

[
j

2k
, j+1

2k

]}
: (1)

{i : g(ψ(i)) ∈ [k,∞)} : (2)
Vj,k =


{
x : g(x) ∈

[
j

2k
, j+1

2k

]}
: (1′)

{x : g(x) ∈ [k,∞)} : (2′)

where (1) and (1′) hold for j ≤ k2k − 1, (2) and (2′) hold for j = k2k.
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Clearly, ψ−1(Vj,k) = Uj,k, implying µ(Uj,k) = ν(Vj,k) by definition.
Hence, by the monotone convergence theorem:∫

Rn
g dν = lim

k→∞

k2k∑
j=0

j

2k
ν(Vj,k) = lim

k→∞

k2k∑
j=0

j

2k
µ(Uj,k) =

∫
Σ

g ◦ ψ dµ

Corollary 6.5. If we take g(x, y) = |x − y|−t for some t ≥ 0, then
we can apply the above proposition twice to get that the t-energy of
ν equals:

It(ν) =

∫
Σ

∫
Σ

dµ(i) dµ(j)

|ψ(i)− ψ(j)|t

Singular value function 6.2.

For the remainder of the section, we follow the exposition in Fal-
coner [5].

Let T : Rn → Rn be an invertible linear mapping that is contract-
ing :

|T (x)− T (y)| < c|x− y| for x, y ∈ Rn and 0 < c < 1

Denote by T ∗ the transpose of T. Then the n positive square roots of
the eigenvalues of T ∗T called the singular values of T satisfy:

0 < αn ≤ αn−1 ≤ . . . ≤ α1 < 1

and can be thought of geometrically as half the lengths of the principal
axes of the following n-dimensional ellipsoid:

T (B1(0)) = {x ∈ Rn : xT(T ∗T )−1x ≤ 1}

In particular, αn and α1 are the shortest and longest distances respec-
tively from the boundary of the n-ellipsoid to its centre the origin.
Further geometric intuition can be gleaned from the relationships:

α1 . . . αt = sup
Lt(T (E))

Lt(E)
(6.1)

and (α1 . . . αn) = det(T ) (6.2)

where Lt is t-dimensional Lebesgue measure and the supremum is
taken over all t-ellipsoids for some t ∈ {0, . . . n}. Roughly speak-
ing, (6.1) results from the fact that the αi’s represent the rates of
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contraction of T in mutually orthogonal directions vi; in fact if T is
represented by a matrix A then, by the singular value decomposi-
tion theorem, A = UDV where U, V represent isometries and D is a
diagonal matrix representing a contraction by the αis in orthogonal
directions wi (which get mapped to the vi’s). Thus, we would expect
the ‘volume’ of the t-ellipsoid to change the least (and hence attain
the supremum above) when, after the first isometry V , V (E) is con-
tained in the linear subspace spanned by w1, . . . , wt and its principal
axes align with the wi’s. We expect this because the ‘volume’ of a
t-ellipsoid is given by the product of the lengths of its principal axes
multiplied by a constant dependent on t, and so the volume of V (E)
should decrease by a factor of α1 · · ·αt in the above scenario.

These considerations should make it evident that the singular val-
ues encode important information about the contractive effect of T
and so it seems a priori likely that they relate in some way to the
dimension of sets generated by such contractions.

Definition 6.6. The singular value function with parameter 0 < t ≤
n is given by

φt(T ) = α1 . . . α
t−m+1
m

where m = dte. It is helpful to assign it a value for all t ≥ 0, so:

φt(T ) =

{
1 if t = 0
(det(T ))t/n if t ≥ n

With reference to (6.2), the continuity of φ should be clear. Also,
recalling that the singular values are all less than 1, we see that as t
increases, φt(T ) decreases.

The following property of the singular value function is crucial, so
we state it as a lemma.

Lemma 6.7. For any t ≥ 0 and T, U invertible linear mappings, we
have:

φt(TU) ≤ φt(T )φt(U)

which is to say, φ is submultiplicative.

Proof. Firstly, note that the composition of invertible linear contrac-
tions is itself an invertible linear contraction so the above statement
makes sense. Due to the presence of a ceiling function in the definition
of the singular value function, it will often be necessary to distinguish
integral from non-integral cases. Take t to be an integer and E to be
a t-dimensional ellipse. Then by (6.1) we have:

Lt(TU(E)) = φt(T )Lt(U(E)) ≤ φt(T )φt(U)Lt(E)
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=⇒ φt(TU) = sup
Lt(TU(E))

Lt(E)
≤ φt(T )φt(U) (6.3)

Now we use this to solve the non-integral case. Take V to be an
invertible linear mapping with singular values α1 . . . αn. Then, for
0 ≤ t ≤ n,

φt(V ) = α1 . . . α
t−m+1
m = (α1 . . . αm)t−m+1(α1 . . . αm−1)m−t

= [φm(V )]t−m+1[φm−1(V )]m−t

Putting V = TU and noting that m and m − 1 are integers and so
(6.3) applies:

φt(TU) ≤ [φm(T )φm(U)]t−m+1[φm−1(T )φm−1(U)]m−t = φt(T )φt(U)

Finally, in the case t ≥ n, we get:

φt(TU) = (det(TU))t/n = (det(T ))t/n(det(U))t/n = φt(T )φt(U)

Singularity dimension of an iterated function system 6.3.

Now we consider the singular value function in the context of an
iterated function system of affine transformations:

F = {T1 + a1, . . . , Td + ad}, ai ∈ Rn for all i = 1, . . . d.

Ti a linear invertible mapping for all i. In what is to follow, we will
rely heavily on symbolic coding, often writing Ti = Ti1 · · ·Tik to refer
to products of maps with the convention that a mapping indexed by
the null sequence, T∅, is the identity mapping. We write the singular
values of a product Ti as:

0 ≤ αn(i) ≤ · · · ≤ α1(i) ≤ 1

and fix constants a, b ∈ R such that:

0 < b ≤ min
{1,...,d}

{αn(i)} ≤ max
{1,...,d}

{α1(i)} ≤ a < 1 (6.4)

These constants provide useful bounds on the singular value func-
tion. For i ∈ Σ∗k:

btk ≤ φt(Ti) ≤ atk (6.5)
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To derive this, we use the inequalities:

αtn(i) = αm−1
n (i)αt−m+1

n (i) ≤ φt(Ti) ≤ αm−1
1 (i)αt−m+1

1 (i) = αt1(i)

αn(i) ≥
k∏
j=1

αn(ij) ≥ bk (6.6)

α1(i) ≤
k∏
j=1

α1(ij) ≤ ak (6.7)

These results can be found in [9].
Our aim here is to develop a notion of the dimension of an IFS in

terms of the singular value function. Since most notions of dimension
are intimately related to concept of measurement at arbitrarily small
scales and since, for each t, φt can be thought of as a ‘measure’ of
the contractive effect of a mapping, we will investigate the sequence
of sums:

σtk =
∑
Σ∗k

φt(Ti1 · · ·Tik)

where we intuitively think of an increase in k as a decrease in the scale
of measurement, since the more contractions we apply to a subset
of Rn, the smaller it becomes. The following lemma and its proof
captures the key properties of this sequence.

Lemma 6.8. Le F be an iterated function system and σtk the sequence
of sums of the singular value function (see above). Then:

1) σtk is submultiplicative. That is, for any k, j ∈ N we have: σtk+j ≤
σtkσ

t
j

2) for a, b as in (6.4) and any δ > 0 we have:

bkδ ≤ σt+δk

σtk
≤ akδ (6.8)

3) There exists a unique s such that:

lim
k→∞

(σsk)
1/k = 1 (6.9)

Proof. It follows directly from lemma (6.7) that if i, j ∈ Σ∗, then

φt(Ti,j) ≤ φt(Ti)φ
t(Tj)
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Now let k, j ∈ N. Then

σtk+j =
∑
Σ∗j+k

φt(Tik,ij) ≤
∑
Σ∗k

φt(Tik)
∑
Σ∗j

φt(Tij) = σtkσ
t
j

which proves 1.
For 2, let 1 > δ > 0. We claim that for any i ∈ Σ∗:

φt(Ti)α
δ
n(i) ≤ φt+δ(Ti) ≤ φt(Ti)α

δ
1(i) (6.10)

There are two cases: for the first, assume t+ δ ≤ m. Then (dropping
the i-dependences for brevity) we get:

φt+δ(T ) = α1 · · ·αt+δ−m+1
m = φt(T )αδm

from which the claim follows. For the case when t + δ > m, notice
that dt+ δe = m+ 1 so then:

φt+δ(T ) = α1 · · ·αmαt+δ−mm+1 = φt(T )αm−tm αt+δ−mm+1

which can be bounded below by:

φt(T )αm−tn αt+δ−mn = φt(T )αδn

and similarly for the upper bound ( just replace the n’s with 1’s),
proving the claim.
Summing (6.10) over all k-length sequences we get:∑

Σ∗k

φt(Ti)α
δ
n(i) ≤

∑
Σ∗k

φt+δ(Ti) ≤
∑
Σ∗k

φt(Ti)α
δ
1(i)

=⇒ bkδ
∑
Σ∗k

φt(Ti) ≤
∑
Σ∗k

φt+δ(Ti) ≤ akδ
∑
Σ∗k

φt(Ti)

where, to get from the first to the second line we applied both (6.6)
and (6.7) . Dividing through by

∑
φt(Ti) gives us 2.

Finally, we prove 3. It is a general fact that if (ak) is a submulti-

plicative sequence, then the associated sequence (a
1/k
k ) converges. To

see this, fix p ∈ N and notice that for any m ∈ N:

apm ≤ amp ⇐⇒ a1/pm
pm ≤ a1/p

p

Now let k ≥ p so there exists m, r ∈ N such that k = pm+ r. Then

a
1/k
k ≤ a1/k

pma
1/k
r ≤ a1/pm

pm a1/k
r ≤ a1/p

p a
r/k
1
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Taking the limit supremum as k →∞ gives

limk→∞a
1/k
k ≤ a1/p

p

Since this holds for any p, it follows

limk→∞a
1/k
k ≤ inf

N
{a1/p

p } ≤ limk→∞a
1/k
k

Hence (a
1/k
k ) converges. since we proved in 1 that the sequence (σtk)

is submultiplicative, we know the limit in 3 exists.
Now we show limk→∞(σtk)

1/k is continuous and strictly decreasing
in t. Raise the expression in (6.8) to the 1/k and take the limit to get:

bδ ≤ limk→∞(σt+δk )1/k

limk→∞(σtk)
1/k
≤ aδ

bδ lim
k→∞

(σtk)
1/k ≤ lim

k→∞
(σt+δk )1/k ≤ aδ lim

k→∞
(σtk)

1/k (6.11)

for all δ > 0. Since aδ < 1 this proves the strictly decreasing property.
Taking the limit as delta tends to 0 gives:

lim
δ→0

[
lim
k→∞

(σt+δk )1/k
]

= lim
k→∞

(σtk)
1/k

Proving continuity. If t = 0, then σtk = dk implying that limk→∞(σtk)
1/k =

d > 1. Moreover, for very large t, the limit approaches 0: this can be
seen by taking δ → ∞ in (6.11). Therefore - essentially by the inter-
mediate value theorem - there must exist a unique value s for which
the limit equals 1, proving our claim.

Since σtk and limk→∞(σtk)
1/k are both strictly decreasing in t, com-

bining (6.9) with Cauchy’s root test we see that:

t > s ⇐⇒
∞∑
k=1

σtk <∞ and t < s ⇐⇒
∞∑
k=1

σtk =∞

Hence, this special value s introduced in the previous lemma may be
thought of equivalently as the unique value for which the sigma sums
switch from being finite to infinite. To emphasise its importance, we
give it a name in the following definition.

Definition 6.9. We define the singularity dimension s(T1, . . . , Td) ≥ 0
(often abbreviated to s), as:

s = inf{t :
∞∑
k=1

∑
Σ∗k

φt(Ti) <∞} = sup{t :
∞∑
k=1

∑
Σ∗k

φt(Ti) =∞}
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Alternatively, s is the unique value such that

lim
k→∞

(σsk)
1/k = 1

It may be wondered if s(T1, . . . , Td) is a dimension in the same sense
as Hausdorff dimension: that is, does there exist a family of measures
for which it is the unique value at which a jump discontinuity occurs?
Remarkably, the answer is yes. To construct such a family, we recall
our assumption that Σ is a metric space equipped with the distance
function:

d(i, j) = 2|i∧j|

Under this metric, cylinder sets are open balls and so the σ-algebra
generated by cylinders equals the Borel σ-algebra.

Definition 6.10. Let t ≥ 0. for each k ∈ N and any subset E ⊂ Σ,
define

N t
k(E) = inf

{∑
i

φt(Ti) : E ⊂
⋃
i

C(i), |i| ≥ k

}
Take the limit as k tends to infinity:

N t(E) = lim
k→∞
N t
k(E)

It follows from theorem 3.11 that N t is an outer measure that
restricts to a measure on the σ-algebra generated by cylinder sets i.e
the Borel σ-algebra.

In the next lemma and throughout the rest of this section we regu-
larly discuss covers of Σ by cylinders and so introduce some useful ter-
minology. We call a set A ⊂ Σ∗ an index covering set if ∪AC(i) = Σ.

Lemma 6.11. Let F = T1, . . . , Td be an iterated function system as
above. Then we have the following equality:

inf{v : N v(Σ) = 0} = sup{v : N v(Σ) =∞} = s(T1, . . . , Td)

Proof. To show the first equality, let r < t. using submultiplicativity
of φ and (6.5):∑

i∈A

φt(Ti) ≤
∑
i∈A

φr(Ti)φ
t−r(Ti) ≤ a(t−r)k

∑
i∈A

φr(Ti)

where A is any index covering set whose elements satisfy |i| ≥ k.
Taking the infimum over all such sets:

N t
k(Σ) ≤ a(t−r)kN r

k (Σ)
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Letting k →∞ we see that ifN t(Σ) > 0 thenN r(Σ) =∞ since a(t−r)k

tends to 0. This proves that the inf and sup above are equal. To show
the other equality requires more work and uses both characterisations
of s(T1, . . . , Td).

Firstly, to show s = s(T1, . . . , Td) ≥ inf{v : N v(Σ) = 0} we sup-
pose

∞∑
k=1

∑
Σ∗k

φt(Ti) =
∑
Σ∗

φt(Ti) <∞

let ε > 0. choose K such that for all k ≥ K we have∑
Σ∗k

φt(Ti) < ε

Since, for all k, Σ∗k is an index cover for Σ we have:

N t
k(Σ) ≤

∑
Σ∗k

φt(Ti) < ε

by the definition of a limit this shows

N t(Σ) = lim
k→∞
N t
k(Σ) = 0

Therefore, we have shown t > s implies t ≥ inf{v : N v(Σ) = 0}, which
gives the desired inequality.

Going in the opposite direction suppose t > inf{v : N v(Σ) = 0}.
Then N t(Σ) = 0 < 1 and so there exists an index covering set A
satisfying: ∑

i∈A

φt(Ti) ≤ 1 (6.12)

A is problematic because it could contain sequences of wildly different
sizes and our aim here is to prove:

lim
k→∞

∑
i∈Σ∗k

φt(Ti)

1/k

≤ 1

where the sums are over equal length sequences. To repair the situa-
tion, define new index covers by concatenating sequences from A:

Ak = {i(1), . . . , i(m) : i(j) ∈ A, where |i(1), . . . , i(m)| ≥ k, |i(1), . . . , i(m−1)| < k}
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where k > max{|i| : i ∈ A} = p. We would like to show that for all k,
Ak can replace A in the inequality (6.12). We prove this by induction,
repeatedly using the fact:∑

i∈A

φt(Ti1 · · ·TijTi) ≤ φt(Ti1 · · ·Tij)
∑
i∈A

φt(Ti)

≤ φt(Ti1 · · ·Tij) (6.13)

Base case: k = p+ 1. Define q to be

q = max{m : i(1), . . . , i(m) ∈ Ap+1}

Note that the minimum over the same set is just 2. Now define sets:

Br = {i(1), . . . , i(r) : |i(1), . . . , i(r)| < p+ 1, i(j) ∈ A}

Cr = {i(1), . . . , i(r) : i(1), . . . , i(r) ∈ Ap+1}

where r ∈ N. For all r > q we see that Br−1 = ∅ = Cr . For r ≤ q we
have the useful relationship

{i, j : i ∈ Br−1, j ∈ A} = Br ∪ Cr (6.14)

since the union of the Cr’s from 2 to q equals Ap+1 we may split up
the sum: ∑

i∈Ap+1

φt(Ti) =
∑
i∈C2

φt(Ti)︸ ︷︷ ︸
=σ2

+ · · ·+
∑
i∈Cq

φt(Ti)︸ ︷︷ ︸
=σq

And use (6.14) and (6.13) repeatedly:

σq =
∑

i∈Bq−1

∑
j∈A

φt(TiTj) ≤
∑

i∈Bq−1

φt(Ti)

σq−1 + σq ≤
∑

Cq−1∪Bq−1

φt(Ti) =
∑

i∈Bq−2

∑
j∈A

φt(TiTj) ≤
∑

i∈Bq−2

φt(Ti)

...

σ2 +

q∑
r=3

σr ≤
∑
C2∪B2

φt(Ti) =
∑
i∈B1

∑
j∈A

φt(TiTj) ≤
∑
i∈B1

φt(Ti)

But B1 = A and so the last line implies:∑
i∈Ap+1

φt(Ti) ≤
∑
i∈A

φt(Ti) ≤ 1
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which proves the base case. Fortunately the induction step is now
quite simple.

Suppose for k ≥ p+ 1 we have:∑
i∈Ak

φt(Ti) ≤ 1

Define A′k = {i ∈ Ak : |i| = k}. Then we may write

Ak+1 = (Ak\A′k) ∪ {i, j : i ∈ A′k, j ∈ A}

and so: ∑
i∈Ak+1

φt(Ti) =
∑

i∈Ak\A′k

φt(Ti) +
∑
i∈A′k

∑
j∈A

φt(TiTj)

≤
∑

i∈Ak\A′k

φt(Ti) +
∑
i∈A′k

φt(Ti)

=
∑
i∈Ak

φt(Ti)

≤ 1

this completes the induction step and therefore the result holds for all
k.

Now we can relate these index covering sets Ak to the Σ∗k’s we are
interested in. If i ∈ Σ∗k+p then i = i′, j where i′ ∈ Ak and |j| ≤ p.
Hence∑

i∈Σ∗k+p

φt(Ti) ≤
∑
j∈Σ∗p

φt(Tj)
∑
i′∈Ak

φt(Ti′) ≤ dp
∑
i′∈Ak

φt(Ti′) ≤ dp

since φt(Tj) ≤ 1 for all j and dp = |Σ∗p|. Raising both sides to the 1/k
and taking the limit yields:

lim
k→∞

∑
i∈Σ∗k

φt(Ti)

1/k

≤ 1

Recalling that this limit is decreasing in t, it follows that t ≥ s which
proves s ≤ inf{v : N v(Σ) = 0}.

The dimension of almost all self-affine sets 6.4.

The singularity dimension is precisely the metric needed to to eval-
uate the Hausdorff dimension of generic self-affine sets in almost all
cases.
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Theorem 6.12. (Falconer) Let F = {T1 + a1, . . . , Td + ad} be an
IFS of affine transformations on Rn as above. Then the Hausdorff
dimension of the unique attractor Λa = ∪di=1(Ti(Λa) + ai) satisfies:

dimH(Λa) ≤ min{s(T1, . . . , Td), n}

Moreover, if we assume ‖Ti‖ < 1/3 for all i, then for Lebesgue almost
every a = (a1, . . . ad) ∈ Rnd, we have

dimH(Λa) = min{s(T1, . . . , Td), n}

The lower bound requires the lion’s share of the work and is achieved
via the potential-theoretic technique expressed in corollary (6.3). Only
in order to apply the corollary we first translate the problem to the
associated sequence space upon which we establish a family of mass
distributions relating to the measure N defined above. After this, our
task is to show that a particular triple integral is finite; unsurprisingly
we will need a couple of lemmas concerning bounds on integrals, so
we remind the reader of the following useful fact

Proposition 6.13. Let E ⊂ Rn and φ : E → Rn an injective dif-
ferentiable function with continuous partial derivatives. Suppose that
for all x ∈ E, we have Dφ(x) 6= 0. If f is a real-valued, compactly
supported, continuous function with support contained inside φ(E),
then ∫

φ(E)

f(x)dx =

∫
E

f(φ(y))| det(Dφ)(y)|dy

Lemma 6.14. Let T : Rn → Rn be an invertible linear mapping.
ρ > 0 be the radius of the ball about the origin Bρ ⊂ Rn and t /∈ N be
such that 0 < t < n. Then there exists a constant c ∈ R≥0 dependent
on n,t and ρ such that:

I =

∫
Bρ

dx

|Tx|t
≤ c

φt(T )

Proof. If α1, . . . αn are the singular values of T then by definition
α2

1, . . . , α
2
n are the eigenvalues of T ∗T with associated eigenvectors

v1, . . . , vn (which we assume to have unit length). It is easily checked
that T ∗T is hermitian (symmetric):

(T ∗T )∗ = T ∗(T ∗)∗ = T ∗T

and so, by the spectral theorem for finite operators there exists an
orthonormal basis of Rn consisting of eigenvectors of T ∗T . Hence,
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we may express any point x ∈ Rn as a linear combination of them:
x = x1v1 + · · ·+ xnvn.

Now, applying T ∗T to x and using its linearity gives:

T ∗Tx = x1α
2
1v1 + · · ·+ xnα

2
nvn

Therefore,

|Tx|t = 〈Tx, Tx〉t/2 = 〈x, T ∗Tx〉t/2

= 〈
n∑
i=1

xivi,

n∑
j=1

xjα
2
jvj〉t/2

=

[
n∑
i=1

n∑
j=1

xixjα
2
j〈vi, vj〉

]t/2

By orthonormality: =

[
n∑
i=1

x2
iα

2
i

]t/2
Hence we can bound the integral in the statement of the lemma:

I =

∫
Bρ

dx

|Tx|t
≤
∫
· · ·
∫
Bρ

dx1 · · · dxn
(α2

1x
2
1 + · · ·+ α2

nx
2
n)t/2

(6.15)

if we make the substitution xi = ρyi/αi then the partial derivatives
are given by:

∂xi
∂yj

=

{
ρ/αi if i = j
0 otherwise

}
yielding a diagonal Jacobian matrix which therefore has determinant
ρn/(α1 · · ·αn). This substitution corresponds to a transformation of
Bρ by first scaling it down to the unit ball and then contracting it
by αi in the ith coordinate axis producing an n-dimensional ellipsoid
E . This ellipsoid will be contained inside the n-dimensional cuboid
defined by:

P = {(y1, . . . , yn) : |yi| ≤ αi for all 1 ≤ i ≤ n}

To see why E ⊂ P , let y ∈ E and x ∈ Bρ a point that maps to y.
Then for each i, |yi| = |αixi/ρ| ≤ αi, implying that y ∈ P .

Hence, (6.15) becomes:

I ≤
∫
· · ·
∫
P

dy1 · · · dyn
ρt(y2

1 + · · ·+ y2
n)t/2

ρn

α1 · · ·αn
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=⇒ ρt−n(α1 . . . αn)I ≤
∫
· · ·
∫
P

dy1 · · · dyn
(y2

1 + · · ·+ y2
n)t/2

(6.16)

We want to approximate the left hand side by something propor-
tional to αm−tm αm+1 · · ·αn in order to prove our claim. To achieve this,
we only pay attention to those coordinates less than or equal to m by
partitioning P into the two subspaces:

P1 = {y ∈ P : y2
1 + · · ·+ y2

m ≤ 4α2
m} = (Bm ∩ P )× [−αm+1, αm+1]× · · · × [−αn, αn]

P2 = {y ∈ P : y2
1 + · · ·+ y2

m−1 > α2
m} = (Bc

m−1 ∩ P )× [−αm, αm]× · · · × [−αn, αn]

whereBm andBm−1 are m and m-1 dimensional balls about the ori-
gin, with radii 2αm and αm respectively. This really is a partition since
if we take y ∈ P and assume y /∈ P1, then because ym ∈ [−αm, αm]:

y2
1 + · · ·+ y2

m−1 + α2
m ≥ y2

1 + · · ·+ y2
m−1 + y2

m > 4α2
m

=⇒ y2
1 + · · ·+ y2

m−1 > 3α2
m > α2

m

and so y ∈ P2. Splitting our integral in (6.16) accordingly:

ρt−n(α1 . . . αn)I ≤
∫
· · ·
∫
P1

dy1 · · · dyn
(y2

1 + · · ·+ y2
n)t/2

+

∫
· · ·
∫
P2

dy1 · · · dyn
(y2

1 + · · ·+ y2
n)t/2

≤
∫
· · ·
∫
P1

dy1 · · · dyn
(y2

1 + · · ·+ y2
m)t/2

+

∫
· · ·
∫
P2

dy1 · · · dyn
(y2

1 + · · ·+ y2
m−1)t/2

=

∫
· · ·
∫
Bm∩P

dy1 · · · dym
(y2

1 + · · ·+ y2
m)t/2

(∫
· · ·
∫
∏n
m+1[−αi,αi]

dym+1 · · · dyn

)

+

∫
· · ·
∫
Bcm−1∩P

dy1 · · · dym−1

(y2
1 + · · ·+ y2

m−1)t/2

(∫
· · ·
∫
∏n
m[−αi,αi]

dym · · · dyn

)

≤ 2n−mαm+1 · · ·αn
∫
· · ·
∫
Bm

dy1 · · · dym
(y2

1 + · · ·+ y2
m)t/2

+ 2n−m+1αm · · ·αn
∫
· · ·
∫
Bcm−1

dy1 · · · dym−1

(y2
1 + · · ·+ y2

m−1)t/2

In the final step, we simply evaluated the bracketed integrals and
enlarged the set of integration for the remaining integrals, thereby
obtaining an inequality. The reason for this enlargement is because it
is now quite simple to evaluate the remaining integrals by switching
to hyperspherical coordinates via the transform:

y1 = r cos(θ1)
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y2 = r sin(θ1) cos(θ2)

...

yk−1 = r sin(θ1) · · · sin(θk−2) cos(θk−1)

yk = r sin(θ1) · · · sin(θk−2) sin(θk−1)

Where 0 ≤ θk−1 ≤ 2π, r > 0 and 0 ≤ θi ≤ π for i = 1, . . . , k − 2.
It can be shown that the determinant of the Jacobian of this trans-

form is rk−1f(θ1 . . . θk−1) where f is a product of sin functions and that
r2 = y2

1 + · · ·+ y2
k - see [7]. Therefore taking k = m:∫

· · ·
∫
Bm

dy1 · · · dym
(y2

1 + · · ·+ y2
m)t/2

=

∫ 2αm

0

∫ 2π

0

· · ·
∫ π

0

r−trm−1f(θ1 . . . θk−1)dθ1 · · · dθm−1dr

=

∫ 2αm

0

rm−t−1mV(m)dr

since t /∈ N, we get: =
2m−tmV(m)

m− t
αm−tm

where V(m) is the volume of the m-dimensional ball and the fact that
it is proportional to the integral over f is proved in [7]. However, it is
not of great importance since we really only need to know that it is a
constant dependent only on m. Similarly, for k = m− 1:∫
· · ·
∫
Bcm−1

dy1 · · · dym−1

(y2
1 + · · ·+ y2

m−1)t/2
=

∫ ∞
αm

rm−t−2(m− 1)V(m− 1)dr

= −(m− 1)V(m− 1)

m− t− 1
αm−t−1
m

Putting all this together, we find that:

ρt−n(α1 . . . αn)I ≤
[

2n−tmV(m)

m− t
+

2n−m+1(m− 1)V(m− 1)

t−m+ 1

]
αm−tm αm+1 · · ·αn

⇐⇒ I ≤ c

φt(T )

Where, as claimed, c is a positive constant dependent only on n, ρ and
t (recall that m is just a function of t).

We use the preceding lemma solely to prove another, which again
involves bounding an integral in terms of the singular value function.
To state this next lemma, we need some notation: recall from (4.4)
that if we take any point z ∈ Rn and any i ∈ Σ then for large k,
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Tik(z) approximates a point of Λa, which is to say that the limit as
k tends to infinity equals a point inside Λa, namely ψa(i) where ψa

is the symbolic coding map. Taking z = 0 we have the convenient
representation:

ψa(i) = lim
k→∞

(Ti1 + ai1)(Ti2 + ai2) · · · (Tik + aik)(0)

= ai1 + Ti1ai2 + Ti1Ti2ai3 + · · · (6.17)

Since the Ti’s are linear and so for each k, the string Ti1Ti2 · · ·Tik(0) =
0. This representation is vital to the next proof.

Lemma 6.15. Let t /∈ N, 0 < t < n and ‖Ti‖ < 1/3 for all i ∈
{1, . . . d}. Let i, j ∈ Σ be distinct. Then there exists a constant c ∈ R,
independent of i and j such that for a ∈ Bρ ⊂ Rnd∫

Bρ

da

|ψa(i)− ψa(j)|t
≤ c

φt(Ti∧j))

Proof. Set p = i ∧ j, which is a finite sequence since i and j are
distinct. Label the leftover sequences i′ and j′ so that i = p, i′, j = p, j′.
Assume, without loss of generality, that the necessarily distinct first
terms of i′ and j′ are 1 and 2 respectively. Using (6.17) we get:

ψa(i′)− ψa(j′) = a1 − a2 + (Tip+1aip+2 + Tip+1Tip+2aip+3 + · · · )

− (Tjp+1ajp+2 + Tjp+1Tjp+2ajp+3 + · · · )

= a1 − a2 + U(a)

where U : Rnd → Rn is a linear mapping since it is the limit of partial
sums of linear mappings. We could group the terms in U(a) according
to the subscript of the a’s and write:

U(a) =
d∑
i=1

Uiai

where each Ui is also a linear mapping. This is for precisely the same
reason U is linear: each Ui is simply a sum (it could be finite or infinite)
of linear mappings.

By writing τ = max{1,...,d} ‖Ti‖ we may upper bound the operator
norm of U :

‖U‖ = sup
a6=0

‖U(a)‖
‖a‖

≤ sup
a6=0

‖Tip+1aip+2‖
‖a‖

+ sup
a6=0

‖Tip+1Tip+2aip+3‖
‖a‖

+ · · ·
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+ sup
a6=0

‖Tjp+1ajp+2‖
‖a‖

+ sup
a6=0

‖Tjp+1Tjp+2ajp+3‖
‖a‖

+ · · ·

and since ‖a‖ ≥ ‖ai‖ for all i = 1, . . . d:

≤ ‖Tip+1‖+ ‖Tip+1Tip+2‖+ · · ·+ ‖Tjp+1‖+ ‖Tjp+1Tjp+2‖+ · · ·

≤ ‖Tip+1‖+ ‖Tip+1‖‖Tip+2‖+ · · ·+ ‖Tjp+1‖+ ‖Tjp+1‖‖Tjp+2‖+ · · ·

≤ 2(τ + τ 2 + τ 3 + · · · )

=
2τ

1− τ
Since, by assumption, τ < 1/3, it follows that ‖U‖ < 1. We now make
a linear substitution in the integral in the statement of the lemma:

a1 = (I + U1)−1(y + a2 − (U2a2 + · · ·+ Udad)) (6.18)

a2 = a2

...

ad = ad

which is valid since ‖U1‖ ≤ ‖U‖ < 1 implies I + U1 is invertible -
see [3]. This transformation is clearly linear and so the determinant
of its nd×nd Jacobian must be some constant c1. We can choose this
constant to be independent of i and j since, as we show momentarily,
our integral substitution maps the ball Bρ into a subset of B(d+2)ρ and
so the determinant of the Jacobian, which represents volume change,
must be bounded by a constant dependent only on ρ.

Rearranging (6.18) we see that:

a1 + U1a1 = y + a2 − (U2a2 + · · ·+ Udad))

⇐⇒ y = a1 + a2 + U(a)

We need to find the set over which our transformed integral should
be taken over. It will be easier to find a ball that contains this set by
bounding the norm of y for the case a ∈ Bρ ⊂ Rnd. This condition
implies ai ∈ Bρ ⊂ Rn for all i. Hence,

‖y‖ ≤ ‖a1‖+ ‖a2‖+
d∑
i=1

‖Ui(ai)‖ ≤ 2ρ+ ‖Ui‖‖ai‖ ≤ (d+ 2)ρ

and so y ∈ B(d+2)ρ ⊂ Rn. Finally, apply the substitution:∫
Bρ

da

|ψa(i)− ψa(j)|t
=

∫
Bρ

da

|Ti∧j(ψa(i′)− ψa(j′))|t
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≤ c1

∫
· · ·
∫
ai∈Bρ

(∫
y∈B(d+2)ρ

dy

|Ti∧j(y)|t

)
da2 · · · dad

By lemma (6.14): ≤ c1c2

φt(Ti∧j))

∫
· · ·
∫
ai∈Bρ

da2 · · · dad

=
c1c2c3

φt(Ti∧j))

where c1 is as stated previously, c2 is a constant dependent on ρ, n
and t as in lemma (6.14) and c3 is clearly dependent only on ρ and n.
Hence the constant is independent of i and j as claimed.

We are almost in a position to prove theorem (6.12). Beforehand,
we quote without proof a highly technical result that alters the mea-
sure N defined in (6.10) to establish a mass distribution on Σ, which
is vital for the lower bound argument.

Proposition 6.16. Let t ≥ 0 be such that N t(Σ) = ∞. Then there
exists a compact subset E ⊂ Σ such that 0 < N t(E) < ∞ and a
constant c1 such that for any i ∈ Σ∗:

N t(E ∩ C(i)) ≤ c1φ
t(Ti) (6.19)

Proof. It is essentially Theorem 54 from Rogers [14]. Refer to Falconer
[5] for elaboration on this point.

since µt(A) = N t(E ∩ A) defines a measure, the above statement
implies the existence of mass distributions on Σ whose values on cylin-
ders are bounded by the singular value function. Now we prove the
main result of this section.

Proof. (of theorem 6.12)

upper bound
Let t > s(T1, . . . , Td) so that N t(Σ) <∞. We will show Ht(Λa) <

∞ for all a ∈ Rnd. Recall that in the definition of the attractor of an
IFS, you take an initial set E ⊂ Rn for which (Ti + ai)(E) ⊂ E for all
i = 1, . . . d and take the union over all k-length sequences of mappings
to get sets that form natural covers of Λa since they can approximate
it arbitrarily well.

In a similar fashion, we consider Bρ for ρ > max1≤i≤d{3‖ai‖/2}
which implies (Ti + ai)(Bρ) ⊂ Bρ since ‖Ti‖ ≤ 1/3 for all i. Let δ > 0
and choose r(δ) ∈ N such that:

|(Ti + ai)(Bρ)| = 2ρα1(i) ≤ 2ρa|i| < δ if |i| ≥ r(δ).
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where we have used (6.7). Let A be an index covering set such that
|i| ≥ r(δ) for i ∈ A and note that, writing Si = Ti + ai, we have:
Λa ⊂ ∪i∈ASi(Bρ), which is a union over ellipsoids since that is what
affine transformations map balls to. Our objective now is to form a
cover of each ellipsoid by small cubes to yield a cover by cubes of the
attractor Λa.

As discussed in lemma (6.14), an ellipsoid (indexed by i) is con-
tained in a cuboid of side lengths 2ρα1(i) . . . 2ραn(i) where the alphas
are the singular values. If m = dte then we can carve up the cuboid
into: (

2α1(i)

αm(i)

)
· · ·
(

2αm−1(i)

αm(i)

)
= 2m−1α1(i) · · ·αm−1(i)α1−m

m (i)

cubes with side length 2ραm(i) < 2ρα1(i) < δ. We obtain this es-
timate simply by dividing each side length of the cuboid by the side
length of a cube to work out the number of cubes needed to cover that
dimension. typically this number is non-integral and so we multiply
it by 2 (explaining the 2 in each bracket); we could just as easily add
1 to each term but then the expression would be messier. If this ratio
of side lengths is less than 1, we just round up to 1.

Since these cubes cover Λa and have diameter less than
√
nδ we

get:

Ht√
nδ(Λa) ≤

∑
i∈A

2m−1α1(i) · · ·αm−1(i)α1−m
m (i) [2ραm(i)]t

≤ 2t+m−1ρt
∑
i∈A

φt(Ti)

Since this inequality holds for any index set A whose elements
satisfy: |i| ≥ r(δ), it holds for the infimum over such index sets:

Ht√
nδ(Λa) ≤ 2t+m−1ρtN t

r (Σ)

Taking the limit as δ → 0, which implies r(δ)→∞, we see that:

Ht(Λa) ≤ 2t+m−1ρtN t(Σ) <∞

which means t ≥ dimH(Λa). Since t was any number greater than s,
we have s ≥ dimH(Λa).

Lower bound
It is sufficient to prove the result for Lebesgue almost all a inside

an arbitrarily large ball, so fix ρ > 0, the radius of some ball in Rn.
Take t /∈ N and r such that

0 < t < r < min{n, s(T1, . . . , Td)}
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By lemma (6.11) N r(Σ) =∞ and so by proposition (6.16) there exists
a compact subset E ⊂ Σ with finite measure, enabling us to define a
mass distribution

µ(A) = N r(E ∩ A), A ∈ B

where µ satisfies: µ(C(i)) ≤ c1φ
r(Ti) i ∈ Σ∗ (6.20)

Our strategy will be to prove that∫
Σ

∫
Σ

∫
Bρ

dadµ(i)dµ(j)

|ψa(i)− ψa(j)|t
<∞

then use Fubini’s theorem (Tonelli’s also works) to take the innermost
integral outside so that the double integral, each over Σ, is finite al-
most everywhere. The result will then quickly follow from potential
theoretic techniques.

By lemma (6.15) we have the estimate∫
Σ

∫
Σ

∫
Bρ

dadµ(i)dµ(j)

|ψa(i)− ψa(j)|t
≤ c

∫
Σ

∫
Σ

φt(Ti∧j)
−1dµ(i)dµ(j) (6.21)

It will be convenient to deal with the cases i ∧ j = ∅ and i ∧ j 6= ∅
separately. Set

Ω = {(i, j) ∈ Σ2 : i ∧ j = ∅}
Using Tonelli’s theorem, we rewrite the right hand side of (6.21) as

c

∫
Σ\Ω

φt(Ti∧j)
−1dµ2(i, j) + c

∫
Ω

φt(Ti∧j)
−1dµ2(i, j)

= c

∫
Σ

(∫
C(j1)

φt(Ti∧j)
−1dµ(i)

)
dµ(j) + cµ2(Ω) (6.22)

where µ2 is the product measure and we used the fact that T∅ = I
(the identity) and so φt(T∅) = 1. Since µ is a finite measure, we
have µ2(Ω) <∞. Therefore, all that remains to be shown is that the
integral in (6.22) is finite.

Since it is an integral over a discrete space it is possible to evaluate
it in terms of infinite sums. Define fj : C(j1)→ R by

f
j
(i) = φt(Ti∧j)

−1 for some fixed j ∈ Σ

Sequences that share their first k terms with j but not their k+1th
term will take the same value under f

j
. That is, all i belonging to

Xk =
⋃

q 6=jk+1

C(jk, q) (6.23)
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are all mapped to the same place. Notice that the union is disjoint
and, moreover, Xk and Xk′ are disjoint for k 6= k′. It follows that we
have the representation:

f
j
(i) =

∞∑
k=1

φt(Tjk)
−1χ

Xk
(i) for i 6= j

Hence f
j

is the almost everywhere (excluding the point j) pointwise

limit of the monotone increasing sequence of functions:

fm
j

=
m∑
k=1

φt(Tjk)
−1χ

Xk

and so by the monotone convergence theorem we have

∞∑
k=1

φt(Tjk)
−1µ(Xk) = lim

m→∞

∫
C(j1)

fm
j
dµ(i) =

∫
C(j1)

f
j
dµ(i) (6.24)

and since Xk is a disjoint union of cylinders, its measure is the sum
over those cylinders:

µ(Xk) =
∑
q 6=jk+1

µ(C(jk, q)) (6.25)

We now treat the integral just evaluated as a function of j, call it g.

g(j) =

∫
C(j1)

f
j
dµ(i) =

∞∑
k=1

φt(Tjk)
−1
∑
q 6=jk+1

µ(C(jk, q))

=
∑
p∈Σ∗

φt(Tp)−1
∑

q 6=j|p|+1

µ(C(p, q))χ
C(p)

(j)

(6.26)

This re-expression is valid because:

χ
C(p)

=

{
1 if p = jk for some k ∈ N

0 otherwise

meaning ‘most’ of the terms equal 0 and we can replace every instance
of p with jk. In order to integrate g with respect to j, we need to write
it as a linear combination of characteristic functions whose coefficients
are independent of j; currently, we have the problematic dependence
of the sum (6.26) upon j. To correct this, observe that for any p ∈ Σ∗:

∑
q 6=j|p|+1

µ(C(p, q))χ
C(p)

(j) =
d∑
l=1

(∑
q 6=l

µ(C(p, q))χ
C(p, l)

(j)

)
(6.27)
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This equality stems from the fact that only one of the d sums grouped
by parentheses can be non-zero: the one for which l = j|p|+1. In what
follows, we abbreviate the double sum on the right hand side of (6.27)
simply to

∑
l 6=q with the understanding that we are summing over all

pairs of distinct integers from 1 to d.
Plugging (6.27) into (6.26) we get:

g(j) =
∑
p∈Σ∗

∑
l 6=q

φt(Tp)−1µ(C(p, q))χ
C(p,l)

(j)

Similarly to before, we can approximate g with simple functions:

gm(j) =
m∑
k=1

∑
p∈Σ∗k

∑
l 6=q

φt(Tp)−1µ(C(p, q))χ
C(p,l)

(j)

and apply the monotone convergence theorem to arrive at∫
Σ

g dµ(j) =
∑
p∈Σ∗

∑
l 6=q

φt(Tp)−1µ(C(p, q))µ(C(p, l))

To simplify this expression we use the upper bound:

∑
l 6=q

µ(C(p, q))µ(C(p, l)) ≤
d∑
l=1

d∑
q=1

µ(C(p, q))µ(C(p, l)) = µ(C(p))2

Recalling the definition of g and f we see that:

∫
Σ

(∫
C(j1)

φt(Ti∧j)
−1dµ(i)

)
dµ(j) =

∫
Σ

(∫
C(j1)

f
j
dµ(i)

)
dµ(j)

=

∫
Σ

g dµ(j)

≤
∑
p∈Σ∗

φt(Tp)−1µ(C(p))2

by (6.20) we get: ≤ c1

∞∑
k=1

∑
Σ∗k

φt(Tp)−1φr(Tp)µ(C(p))

by (6.10) and (6.7): ≤ c1

∞∑
k=1

∑
Σ∗k

ak(r−t)µ(C(p))

≤ c1µ(E)
∞∑
k=1

ak(r−t)
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since ar−t < 1: <∞

Combining this with (6.21), we have proved:∫
Σ

∫
Σ

∫
Bρ

dadµ(i)dµ(j)

|ψa(i)− ψa(j)|t
<∞

We would like to apply Fubini’s theorem but to do so we must check
that the integrand, ϕ(a, i, j) = |ψa(i)− ψa(j)|−t is a Borel-measurable
function on the product space Rnd × Σ× Σ. From the representation
given in lemma (6.17) it is evident that ψa(i) is continuous both as
a function of a and as a function of i, hence it is continuous on the
product space. The only reason that ϕ isn’t continuous is because
it has singularities (for instance at those points at which i = j). To
circumvent this issue, consider:

ϕr(a, i, j) = min{r, ϕ(a, i, j)}

which is a continuous function for all r ≥ 0 (since we have removed the
singularities) and we recover ϕ by taking the limit as r → ∞. Since
continuous functions are Borel-measurable and the pointwise limit of
such functions is also Borel-measurable, we have the desired result.

Hence, we can take take the inner integral outside and conclude:∫
Σ

∫
Σ

dµ(i)dµ(j)

|ψa(i)− ψa(j)|t
<∞ (6.28)

holds for Lebesgue-almost every a ∈ Bρ ⊂ Rnd. Now we translate the
problem back down from the sequence space by defining, for each such
a, the measure

ν(A) = µ{i : ψa(i) ∈ A} A ∈ B

Since ψa(Σ) = Λa, ν(Rn) = ν(Λa) = µ(Σ), ν is supported on Λa.
Corollary (6.5) states that we have the following equality:∫

Λa

∫
Λa

dν(y)dν(x)

|x− y|t
=

∫
Σ

∫
Σ

dµ(i)dµ(j)

|ψa(i)− ψa(j)|t
<∞

Therefore, by theorem (6.2), it follows that dimH(Λa) ≥ t for Lebesgue-
almost every a ∈ Bρ. Since ρ is arbitrary, the result actually holds for
almost every a ∈ Rnd and since t can be any non-integral number less
than min{n, s}, we conclude that dimH(Λa) ≥ min{n, s}.

Largely using the methods of the previous proof, we can show
that the Minkowski dimension of Λa is almost always equal to the
singularity dimension.
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Theorem 6.17. Suppose dimH(Λa) = min{n, s} for some a ∈ Rnd.
Then dimM(Λa) exists and also equals min{n, s}.

Proof. It is always the case that the lower box dimension exceeds the
Hausdorff dimension:

min{n, s} = dimH(Λa) ≤ dimM(Λa)

So it suffices to show that the upper box dimension is bounded above
by min{n, s}. If this minimum is n then the argument is fairly trivial
(intuitively, the dimension of a subset of the ‘n-dimensional’ space Rn

should not exceed n). So we address the case when the minimum
equals s.

Let s < t < n and m = dte. By the characterisation of s in lemma
(6.8) we may choose k ∈ N such that:∑

i∈Σ∗k

φt(Ti) ≤ 1 (6.29)

Let 1 > ε > 0. We construct a new index covering set from Σ∗k, one
that indexes matrix products whose contractive effect, as measured by
their m-th singular value, is approximately ε. Such matrix products
are naturally associated to ellipsoids (by their action on a ball) which
may be covered by epsilon cubes, yielding an estimate for the minimum
number of cubes needed to cover Λa. The construction of the index
cover proceeds as follows: for i ∈ Σ, take q(i) to be the smallest
positive integer such that:

ε ≥ αm(iqk) > bkε (6.30)

To show that such an integer exists we need the singular value in-
equality:

a(|p|+|j|) ≥ αm(p)α1(j) ≥ αm(p, j) ≥ αm(p)αn(j) ≥ b(|p|+|j|) (6.31)

which holds for any p, j ∈ Σ∗ - see [9]. This inequality implies that the
sequence αm(ijk) is strictly decreasing in j and tending to 0. Moreover
it implies that αm(ik) ≥ bk > bkε, so either αm(ik) < ε and so satisfies
(6.30), meaning we’re finished or it is larger than ε and we can apply
(6.31):

αm(i2k) > αm(ik)α1(ik) > bkε

Again, either αm(i2k) ≤ ε and we’re finished or we reapply (6.31).
This process is repeated until we reach a value in the sequence less
than ε, which must happen since the sequence tends to 0.
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Thus we know that for each i ∈ Σ, a unique q(i) satisfying (6.30)
exists. Let Q ⊂ N be the set consisting of these q(i)’s and note that
Q is finite because it is bounded by j satisfying: ajk < εbk. Define an
index cover A = {iqk : q ∈ Q}. We claim that:∑

i∈A

φt(Ti) ≤ 1 (6.32)

The proof is very similar to part of lemma (6.11). Firstly, set q1 =
minQ, q2 = maxQ and define sets:

Aj = {ijk : j ∈ Q} Bj = {ijk : αm(ijk) > ε}

Note that for j > q2, we have Aj = Bj−1 = ∅ and if j ≤ q2, then
concatenating a sequence from Bj with a k-length sequence gives a
sequence that is either in Aj+1 or Bj+1. In symbols:

{ijk, ik : ijk ∈ Bj} = Aj+1 ∪Bj+1 (6.33)

Clearly, we have:∑
i∈A

φt(Ti) =
∑
i∈Aq1

φt(Ti)︸ ︷︷ ︸
=σq1

+ · · ·+
∑
i∈Aq2

φt(Ti)︸ ︷︷ ︸
=σq2

Using the submultiplicativity of φ and (6.29), we see that

σq2 ≤
∑
Aq2

φt(Ti(q2−1)k
)φt(Tik) ≤

∑
Bq2−1

φt(Ti)
∑
Σ∗k

φt(Ti) ≤
∑
Bq2−1

φt(Ti)

and, by repeating this argument for j = q2 − 1 descending to j = q1,
using (6.33) at each stage, we get:

q2∑
r=j

σr ≤
∑

i∈Bj∪Aj

φt(Ti) =
∑

i∈Bj−1

∑
p∈Σ∗k

φt(Ti,p) ≤
∑

i∈Bj−1

φt(Ti)

If q1 = 1 then Aq1 ∪Bq1 = Σ∗k and we’re finished. If not, then:

∑
i∈A

φt(Ti) =

q2∑
r=q1

σr ≤
∑

i∈Bq1−1

φt(Ti) =
∑

i∈Σ∗
(q1−1)k

φt(Ti)

By using submultiplicativity repeatedly on the final sum here, we even-
tually bound it by 1, precisely as desired.

We now continue in a similar manner to the upper bound ar-
gument for Hausdorff dimension in theorem (6.12). Choose ρ >
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max1≤i≤d{3‖ai‖/2} and greater than 1/2 so that (Si)(Bρ) ⊂ Bρ for
all i, where si = Ti + ai. By the same reasoning as in theorem (6.12)
we have Λa ⊂ ∪i∈ASi(Bρ) is a cover by ellipsoids and an ellipsoid Si

may be covered by no more than:

(2ρ)n2m−1α1(i) · · ·αm−1(i)α1−m
m (i) = 2n+m−1ρnφt(Ti)α

−t
m (i)

cubes of side αm ≤ ε. Therefore, Λa may be covered by the following
number of cubes of side ε:

2n+m−1ρn
∑
i∈A

φt(Ti)α
−t
m (i) ≤ 2n+m−1ρn

∑
i∈A

φt(Ti)b
−ktε−t

≤ 2n+m−1ρnb−ktε−t

= cε−t

where c is independent of ε. this is an upper bound on N(ε), the
minimal number of cubes side ε that cover Λa. Hence,

dimM(Λa) = limε→0
− logN(ε)

log ε
≤ lim

ε→0

− log c+ t log ε

log ε
= t.

Remark 6.18. It may be wondered whether the above results are
sharp in the sense that ‘almost everywhere’ could not be replaced by
just ‘everywhere’. It turns out that the result is sharp in this sense,
moreover we can prove it using our results from section 5. This is the
topic of the following subsection.

When do Falconer’s and McMullen’s dimension formulae agree?
6.5.

Recall McMullen’s iterated function system in (5.1) whose attrac-
tor Λ was a self-affine carpet. The system was specified by:

Ti(x) =

(
1/n 0
0 1/m

)(
x
y

)
+

(
xi/n
yi/m

)
(6.34)

where n ≥ m and (xi, yi) ∈ D ⊂ {0, . . . , n} × {0, . . . ,m} is some
collection of integer pairs and

d = |D|, t = |πy(D)| and tj = |{xi : (xi, j) ∈ D}| (6.35)

61



It is possible to explicitly calculate the singularity dimension for a
system of this type and determine when this value coincides with the
dimension formulae we proved, namely:

dimM(Λ) = logn(
d

t
) + logm(t), dimH(Λ) = logm

(
m−1∑
j=0

t
logn(m)
j

)
(6.36)

Assuming n 6= m, it will be helpful to describe pictorially the
necessary and sufficient conditions for coincidence of the dimensions
before stating the result formally. Recall that by picturing the m
by n grid associated to McMullen carpet with d rectangles shaded
according to our IFS, t represents the number of rows containing a
shaded rectangle and tj the number of shaded rectangles in the jth
row.

The Minkowski and singularity dimensions agree precisely when
t = min{d,m}, so every row contains a shaded rectangle unless there
aren’t enough rectangles in which case we place one in as many rows
as possible. This condition is also necessary for the Hausdorff and
singularity dimensions to agree but in this case we also require that
every row contains the same number of shaded rectangles (except for
the case when some rows contain 1 and others 0).

Proposition 6.19. Let F = {Ti}di=1 be as above. Then

s(T1, . . . , Td) =


logm(d) if d ≤ m

logn(dn
m

) if d ≥ m

(6.37)

Moreover, if n = m then we have:

s(T1, . . . , Td) = dimH(Λ) = dimM(Λ)

If n 6= m then the following two statements are true:

i) s(T1, . . . , Td) = dimM(Λ) if and only if t = min{m, d}.

ii) s(T1, . . . , Td) = dimH(Λ) if and only if either

t = m and for all j1, j2 ∈ {1, . . . ,m} we have tj1 = tj2

or t = d ≤ m.

Proof. For any ik ∈ Σ∗k we have

Ti1 ◦ · · · ◦ Tik =

(
(1/n)k 0

0 (1/m)k

)
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giving: (Ti1 ◦ · · · ◦ Tik)∗Ti1 ◦ · · · ◦ Tik =

(
(1/n)2k 0

0 (1/m)2k

)
which has eigenvalues (1/n)2k and (1/m)2k and thus singular values
α1 = (1/m)k and α2 = (1/n)k (labelled in decreasing order). Hence,∑

Σ∗k

ϕ(Ti1 ◦ · · · ◦ Tik) =

{
dkm−ks if 0 ≤ s ≤ 1
dkm−kn(1−s)k if 1 < s ≤ 2

Raising everything to the power 1/k and taking the limit as k →∞:

lim
k→∞

∑
Σ∗k

ϕ(Ti1 ◦ · · · ◦ Tik)

1/k

=

{
dm−s if 0 ≤ s ≤ 1
dm−1n(1−s) if 1 < s ≤ 2

Recall that the value of s for which the above limit equals 1 gives the
singularity dimension. So solving for s:

For 0 ≤ s ≤ 1: dm−s = 1 ⇔ s = logm(d) (6.38)

For 1 ≤ s ≤ 2: n1−s =
m

d
⇔ (1− s) = logn(

m

d
)

⇔ s = logn(
dn

m
) (6.39)

These equivalences show that:

0 ≤ s ≤ 1 ⇐⇒ d ≤ m and 1 ≤ s ≤ 2 ⇐⇒ d ≥ m

and so we have proven (6.37).
Now consider the special case of n = m. Plugging these into our

formulae (6.36) and (6.37) we get

logm(d) = s(T1, . . . , Td) = dimH(Λ) = dimM(Λ)

As desired. Now assume n 6= m. We determine when the Minkowski
and singularity dimensions agree.

If d ≤ m, we have:

logm(d) = logn(
d

t
) + logm(t) ⇔ logm(d)− logn(d) = logm(t)− logn(t)

⇔ logm(d)[1− logn(m)] = logm(t)[1− logn(m)]

⇔ d = t
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And if d ≥ m:

logn(
dn

m
) = logn(

d

t
) + logm(t) ⇔ 1− logn(m) = logm(t)[1− logn(m)]

⇔ 1 = logm(t)

⇔ m = t

So we have equality if and only if t = min{m, d} as claimed in i).
Deducing precisely when McMullen’s value for dimH(Λ) matches

Falconer’s is now quite simple if we remember that the relationship:

dimH(Λ) ≤ dimM(Λ) ≤ s(T1, . . . , Td) (6.40)

holds always (not just almost always). It is simple because we just
showed the precise conditions under which the second equality holds
and we discussed in remark (5.7) precisely when the first equality
holds: when there exists a constant c such that tj equals c or 0 for all
j. Combining these necessary and sufficient conditions gives ii).
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7 Thermodynamic Formalism

The thermodynamic formalism is a branch of ergodic theory that has
repurposed many concepts from statistical mechanics in order to anal-
yse non-linear dynamical systems and iterated function systems. Per-
haps the three greatest contributors to the field are Sinai, Ruelle and
Bowen who introduced the fundamental ideas and showed how they
could be used to establish invariant ergodic measures on the attractor
of the IFS (or repeller of the dynamical system), which then allows
the machinery of ergodic theory to be utilised.

The basic idea is to define a function φ called a potential that may,
loosely, be thought of as a tool for measuring your system. We then
try to understand how the system evolves over time (as measured by
iterations of our maps) by considering the sums of the values of φ
from t = 1 up to t = n. It is by analysing the asymptotic behaviour
of these sums that we are able to define a measure known as a Gibbs
measure which may be chosen to be invariant and ergodic. Using such
a measure it is possible to answer many important questions about
the system: most relevant to us will be how it can be used to find the
Hausdorff dimension of the attractor.

We develop the theory in the context of a ‘non-linear’ carpet as
outlined below.

Non-linear Carpet 7.1.

Let X ⊂ R be non-empty compact set. Throughout this entire
section, we work with the IFS F = {Fi,j}, consisting of d contractions
with domain X2 ⊂ R2 and defined by:

Fi,j(x, y) =

(
Ti,j(x),

1

3
y +

j − 1

3

)
(7.1)

where (i, j) ∈ D ⊂ {1, . . . , d}× {1, 2, 3} and the Ti,j’s are (potentially
non-linear) differentiable bijections.

Figure 3: example of the first stage of construction of a non-linear carpet

We assume the IFS satisfies the open set condition so that the
rectangles Fi,j(X

2) may only intersect at their boundaries as can be
seen in figure 3. We also assume that for all (i, j) ∈ D we have the
inverse maps T−1

i,j ∈ C1+α. This means that each T−1
i,j is differentiable

and its derivative satisfies a Hölder condition with exponent α. That
is, there exists constants 0 ≤ ai,j and 0 < α < 1 such that for all
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x1, x2 ∈ Ti,j(X):

|(T−1
i,j )′(x1)− (T−1

i,j )′(x2)| ≤ ai,j|x1 − x2|α

Furthermore, since the (T−1
i,j )′ are continuous maps on a compact

set, there exists constants 0 < cmin and 0 < cmax such that for any
(i, j) ∈ D:

c−1
max ≤ (T−1

i,j )′(x) ≤ c−1
min for all x ∈ Ti,j(X)

=⇒ cmin ≤ T ′i,j(x) ≤ cmax for all x ∈ X

It is important that we assume that each map in our IFS has a strictly
greater horizontal rate of contraction than vertical. Thus, we assume
that:

0 < cmin ≤ cmax <
1

3

Using these two constants we can apply the mean value theorem to
the Ti,j’s to yield the inequality:

cmin|x1 − x2| ≤ |Ti,j(x1)− Ti,j(x2)| ≤ cmax|x1 − x2| (7.2)

for any x1, x2 ∈ X. This, in turn, yields the inequality

cmin|(x1, y1)− (x2, y2)| ≤ |Fi,j(x1, y1)− Fi,j(x1, y1)| ≤ 1

3
|(x1, y1)− (x2, y2)|

(7.3)

for any (x1, y1), (x2, y2) ∈ X2.
We make some important observations concerning the notation.

Note that whilst the second coordinate of elements of D confer in-
formation on the vertical positioning of the associated map, the first
coordinate does not - it merely indexes the element. Also note that
because i ∈ {1, . . . , d} and |D| = |{1, . . . , d}|, it technically suffices to
write Fi and Ti to uniquely specify a map in the IFS. Indeed, this is
how we indexed our IFS in section 5 for the McMullen carpets and
we occasionally do it here for notational simplicity. However, most of
the time we work with D and so use Σ = DN as the symbolic space
with which we code via the map ψ : Σ→ Λ. One final warning is that
there is potential for confusion with the notation (i, j) for elements of
Σ since it is also the notation we use for concatenation of sequences.
Throughout this section, a comma between sequences denoted by an
i and a j will will not refer to concatenation. Otherwise, it may do.

We now develop some of the key principles behind the thermody-
namic formalism, working on the space Σ.
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Principles of variation and distortion 7.2.

The core of the following exposition can be found in chapters 4
and 5 of Falconer [4], however we make many minor modifications
and generalisations whilst developing the theory in the context of a
non-linear carpet.

Definition 7.1. We call a function φ : Σ→ R a potential if, for each
m = 1, . . . , d, we have

|φ(ω)− φ(θ)| ≤ am|ψ(ω)− ψ(θ)|α for all ω,θ ∈ C(m) ⊂ Σ
(7.4)

where am > 0 is a constant for each m. Thus, we can think of a poten-
tial as satisfying a hölder-continuity type condition on each cylinder
set with exponent α > 0.

Much of the analysis to come depends on the following sums, which
we shall term ‘ergodic sums’ for reasons which will become clear.

Skφ(ω) = φ(ω) + φ(σω) + · · ·φ(σk−1ω) =
k−1∑
m=0

φ(σmω) (7.5)

By definition, a potential has bounded variation on cylinders of length
1; we show that the sums Skφ have bounded variation on cylinders of
length k. Moreover, this bound is uniform: it is independent of a
choice of k and a choice of k-length cylinder. It will be convenient
for later applications to first prove a similar result for the IFS {Fi,j}
defined on the square X2.

Proposition 7.2.

i) For m ∈ {1, . . . , d}, let γm : X2 → R satisfy:

|γm(x1, y1)− γm(x2, y2)| ≤ am|Fm(x1, y1)− Fm(x2, y2)|α (7.6)

for constants am > 0. Then there exists b > 0 such that for all
k = 1, 2, . . . and all ω ∈ Σ∗k we have∣∣∣∣∣

k−1∑
m=0

γωm+1(Fωm+2 ◦ · · · ◦ Fωkx)−
k−1∑
m=0

γωm+1(Fωm+2 ◦ · · · ◦ Fωky)

∣∣∣∣∣ ≤ b

(7.7)

For any x, y ∈ X2 (Note: we will agree that the arguments of the
k − 1th terms are simply x and y).
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ii) Let φ : Σ → R; φ(ω) = γω1(ψ ◦ σ(ω)). Then φ defines a potential
and for all k ∈ N and all ωk ∈ Σ∗k we have

|Skφ(ω)− Skφ(θ)| ≤ b (7.8)

for any ω,θ ∈ C(ω1, . . . , ωk) ⊂ Σ.

Proof. Firstly, set a = max1≤m≤d{am} and let k ∈ N and ωk ∈ Σ∗k. For
each m ∈ {0, . . . , k − 1} we can first apply (7.6) and then repeatedly
use the Lipschitz condition on F as stated in (7.3) to get:

|γωm+1(Fωm+2 ◦ · · · ◦ Fωkx)− γωm+1(Fωm+2 ◦ · · · ◦ Fωky)|

≤ a|Fωm+1 ◦ · · · ◦ Fωkx− Fωm+1 ◦ · · · ◦ Fωky|α

≤ a (1/3)α(k−m)|x− y|α

≤ a (1/3)α(k−m)|X2|α

This holds for all x, y ∈ X2. Thus, we can bound the left hand side of
(7.7) by:

k−1∑
m=0

|γωm+1(Fωm+2 ◦ · · · ◦ Fωkx)− γωm+1(Fωm+2 ◦ · · · ◦ Fωky)|

≤
k−1∑
m=0

a|X2|α(1/3)α(k−m)

≤ a|X2|α(1/3)α

1− (1/3)α

where the final inequality comes from summing the geometric series
since 0 < (1/3)α < 1. This concludes the proof of i).

Now we show that φ, as defined in ii), gives a potential. Let
ω,θ ∈ C(ω1) ⊂ Σ. Then

|φ(ω)− φ(θ)| = |γω1(ψ ◦ σω)− γω1(ψ ◦ σθ)|

≤ a|Fω1 ◦ ψ ◦ σω − Fω1 ◦ ψ ◦ σθ|α

= a|ψω − ψθ|α

In order to establish (7.8), observe that, for m ∈ {0, . . . k − 1}, we
have

φ(σmω) = γωm+1(ψ ◦ σm+1ω) = γωm+1(Fωm+2 ◦ · · · ◦ Fωk(ψω′))
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where ω′ = σkω. Hence,

Skφ(ω) =
k−1∑
m=0

γωm+1(Fωm+2 ◦ · · · ◦ Fωk(ψω′)) (7.9)

and so (7.8) follows directly from (7.7).

The content of part ii) of the above proposition actually holds for
all potentials. We state this fact as a separate proposition in view of
its importance but note that the proof is nearly identical to the one
just given and is thus omitted.

Proposition 7.3 (Principle of bounded variation). There exists a
constant b > 0 such that for all k ∈ N and all ωk ∈ Σ∗k we have

|Skφ(ω)− Skφ(θ)| ≤ b (7.10)

for any ω,θ ∈ C(ω1, . . . , ωk) ⊂ Σ.

Going forward, we will mostly be interested in the exponentials of
the ergodic sums, so a useful restatement of (7.10) is

e−b ≤ expSkφ(ω)

expSkφ(θ)
≤ eb (7.11)

Recall that our maps {Fi,j} can only be non-linear in the x-coordinate
and so there is uncertainty of the width but not the height of the
rectangles Fikjk(X

2). Nevertheless, by a special choice of potential
dependent only on πx(Σ) - the shift space coding the x-coordinate -
we can estimate these widths. We consider, for (i, j) ∈ Σ,

φ(i, j) = log |T̃ ′i1(σi)| := log |T ′i1(ψ ◦ σi)| (7.12)

We prove it gives a potential and that its ergodic sums have a clean
expression in terms of the ‘derivatives’ of compositions of the T̃i’s.

Lemma 7.4. Let φ be as in (7.12). Then φ is a potential and for
ω = (i, j):

i) exp
(∑k−1

m=0 log |T ′ωm+1
(Tωm+2 ◦ · · · ◦ Tωkx)|

)
= T ′ωk(x)

ii) exp(Skφ(ω)) = T̃ ′ωk(σ
ki)

Proof. Define γm(x, y) = log T ′m(x), m ∈ {1, . . . d}. Note that:

φ(ω) = γω1(ψ ◦ σω)
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and so if we can show as in part i) of proposition (7.2) that γm satisfies

|γm(x1, y1)− γm(x2, y2)| ≤ am|Fm(x1, y1)− Fm(x2, y2)|α (7.13)

then it follows by part ii) of the same proposition that φ is a potential.
So, let (x1, y1), (x2, y2) ∈ X2. Then

|γm(x1, y1)− γm(x2, y2)| = | log T ′m(x1)− log T ′m(x2)|

=

∣∣∣∣log
1

(T−1
m )′(Tmx1)

− log
1

(T−1
m )′(Tmx2)

∣∣∣∣
= | log(T−1

m )′(Tmx1)− log(T−1
m )′(Tmx2)|

(Since (T−1
m )′(Tmxi) > 1): ≤ |(T−1

m )′(Tmx1)− (T−1
m )′(Tmx2)|

≤ am|Tmx1 − Tmx2|α

≤ am|Fm(x1, y1)− Fm(x2, y2)|α

Where, in the penultimate line, we used the hölder continuity of the
(T−1

m )′ maps.
To prove part i) we apply the chain rule repeatedly

(Tω1 ◦ · · · ◦ Tωk)′(x) = T ′ω1
(Tω2 ◦ · · · ◦ Tωkx)× (Tω2 ◦ · · · ◦ Tωk)′(x)

...

=
k−1∏
m=0

T ′ωm+1
(Tωm+2 ◦ · · · ◦ Tωkx) (7.14)

(note: as before, in the final line we take the the argument of the
k − 1th term to be x) Now if we take logarithms

log |T ′ωk(x)| =
k−1∑
m=0

log |T ′ωm+1
(Tωm+2 ◦ · · · ◦ Tωkx)|

Taking exponentials gives the desired result. ii) follows swiftly after
applying (7.9):

Skφ(ω) =
k−1∑
m=0

log T ′ωm+1
(Tωm+2 ◦ · · · ◦ Tωk(ψσki))|

= log |T ′ωk(ψσ
ki)|

= log |T̃ ′ωk(σ
ki)|

and, again, taking exponentials.
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Corollary 7.5. Let ωk ∈ Σ∗k. For any x, y ∈ X we have

e−b ≤
|T ′ωk(x)|
|T ′ωk(y)|

≤ eb

Proof. It is a direct consequence of part i) of proposition (7.2) and
part i) of the foregoing lemma.

Using the previous lemma and the principle of bounded variation
we can obtain an estimate for the numbers |Tωk(X)| (which are the
widths of the rectangles Fωk(X

2)) that is uniform over all cylinders
(of any length), which is crucial if we are to try and describe the
asymptotic behaviour of the system. We obtain this estimate using
the derivatives of the Tωk ’s, which makes sense intuitively since the
derivative is a local linear approximation and the maps are becoming
increasingly ‘localised’ insofar as their images are shrinking exponen-
tially. We can see this analytically by inspecting (7.14): the first term
in the product is heavily constrained in the amount it can vary whilst
subsequent terms have more and more freedom. The total possible
variation, regrdless of the length of the product or the sequence of
maps we choose, is bounded by a fixed constant.

Proposition 7.6 (Principle of bounded distortion). There exists an
constant b0 > 0 such that for all k = 1, 2, . . . and all ωk ∈ Σ∗k we have

b−1
0 ≤

|Tωk(X)|
|T ′ωk(x)|

≤ b0 (7.15)

for any x ∈ X. In particular,

b−1
0 ≤

|Tωk(X)|
|T̃ ′ωk(i)|

≤ b0 (7.16)

for any i ∈ πx(Σ).

Proof. Let k ∈ N and ωk ∈ Σ∗k. Observe that Tωk : X → Tωk(X) is
a differentiable bijection. We apply the mean value theorem to this
map so that for any y, z ∈ X, there exists a w ∈ X for which

Tωk(y)− Tωk(z) = T ′ωk(w)(y − z)

Picking y and z to be endpoints of X, we have

|Tωk(X)| = |T ′ωk(w)||X|
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It is stated in corollary (7.5) that for any x ∈ X:

e−b ≤
|T ′ωk(w)|
|T ′ωk(x)|

≤ eb

Hence

|X|e−b ≤ |Tωk(X)|
|T ′ωk(x)|

≤ eb|X|

Which gives the result upon taking b0 = max{eb|X|, eb|X|−1}. (7.16)
now follows trivially upon noticing that, for any i ∈ πx(Σ), ψ(i) ∈ X
and T̃ ′ωk(i) = T ′ωk(ψi) by definition.

Pressure and Gibbs measures 7.3.

In this section we put to use the uniform bounds provided by the
twin principles of bounded variation and distortion to understand the
asymptotic behaviour of our iterated function system. As discussed,
one may think of our potential φ as a tool for measuring this behaviour
and in fact, using the ergodic sums Skφ, we can define a class of actual
measures known as Gibbs measures which are critical to calculating
dimensions.

Consider the sums:∑
ωk∈Σ∗k

expSkφ(ω) (ω ∈ C(ωk))

we are mostly interested in the case when φ(ω) is negative and so
the summand is decreasing exponentially in k. What makes this case
interesting is that the number of terms in the sum - dk - which is
the number of k-length cylinders, is clearly increasing exponentially
in k, so the question arises, which (if any) exponential rate dominates
for large k? and can we choose a potential φ such that the opposing
exponential rates cancel out, achieving a kind of equilibrium? To
answer these questions we introduce the pressure of a potential, which
is the exponential decay or growth constant of the above sums. Before
that, we need a quick basic result about subadditive sequences.

Lemma 7.7.

1) Let (am)∞m=1 be a subadditive sequence of real numbers. That is,

ak+m ≤ ak + am for all k,m ∈ N

then limm→∞ am exists and equals infm∈N am/m.
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2) Let b ∈ R and (am)∞m=1 be a sequence of real numbers such that

ak+m ≤ ak + am + b for all k,m ∈ N

Then a = limm→∞ am exists and for all integers m we have am ≥ ak+b.

Proof. Set bm = eam . Then bm is submultiplicative and so by lemma
(6.8), limm→∞ bm exists and equals infm∈N bm/m. Taking logarithms
gives 1).

For 2), note that

ak+m + b ≤ (ak + b) + (am + b) for all k,m ∈ N

so we can apply part 1) to the sequence (am + b)∞m=1 to get:

a = lim
m→∞

am
m

= lim
m→∞

am + b

m
= inf

m∈N

am + b

m

which implies am ≥ ak − b for all m.

Theorem 7.8. For each k ∈ N and each cylinder set C(ωk) ⊂ Σ,
choose ω ∈ C(ωk) to be any point inside it. We claim that the
following limit exists

P (φ) = lim
k→∞

1

k
log

∑
ωk∈Σ∗k

expSkφ(ω) (7.17)

and is independent of our choice of points ω ∈ C(ωk).
Moreover, there exists a Borel probability measure µ, called a Gibbs

measure, whose defining property is that there exists a constant a0 > 0
such that for all k ∈ N and all ωk ∈ Σ∗k:

a−1
0 ≤

µ(C(ωk))

exp(Skφ(ω)− kP (φ))
≤ a0 (7.18)

for any choice ω ∈ C(ωk).

Proof. Fix θ ∈ Σ. For all k ∈ N, We choose a point ω inside each
cylinder C(ωk) such that σk(ω) = θ. Once we have proven (7.17)
exists for these ω, we will extend the result to any set of choices.

By definition of ergodic sums we have

Sk+mφ(ω) = Skφ(ω) + Smφ(σkω)

for any k,m ∈ N. Taking exponentials and summing over all ω ∈ Σ
such that, after k +m terms, they equal θ:∑
ω: σk+mω=θ

exp(Sk+mφ(ω)) =
∑

ω: σk+mω=θ

exp(Skφ(ω)) exp(Smφ(σkω))
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=
∑

η: σmη=θ

∑
ω: σkω=η

exp(Skφ(ω)) exp(Smφ(σkω))

=
∑

η: σmη=θ

exp(Smφ(η))
∑

ω: σkω=η

exp(Skφ(ω))

(7.19)

Now we know each ω in the above sums is of the form:

ω = ω1, ω2, . . . , ωm+k, θ1, θ2, . . .

For each such ω, there exists ω′ such that:

ω′ = ω1, ω2, . . . , ωk, θ1, θ2, . . .

so that ω,ω′ ∈ C(ω1, . . . , ωk). By the principle of bounded variation
(7.11), we have

e−b exp(Skφ(ω′)) ≤ exp(Skφ(ω)) ≤ eb exp(Skφ(ω′))

Hence, we can bound the expression (7.19) from below:

e−b
∑

η: σmη=θ

exp(Smφ(η))
∑

ω: σkω=θ

exp(Skφ(ω)) ≤
∑

ω: σk+mω=θ

exp(Sk+mφ(ω))

and from above:∑
ω: σk+mω=θ

exp(Sk+mφ(ω)) ≤ eb
∑

η: σmη=θ

exp(Smφ(η))
∑

ω: σkω=θ

exp(Skφ(ω))

Writing:

αk =
∑

ω: σkω=θ

exp(Skφ(ω))

we can re-write the above inequalities compactly:

e−bαkαm ≤ αk+m ≤ ebαkαm (7.20)

Taking logarithms and writing βk = logαk gives

βk + βm − b ≤ βk+m ≤ βk + βm + b (7.21)

By lemma (7.7) on subadditive sequences , the following limit exists

lim
k→∞

1

k
βk = lim

k→∞

1

k
logαk

Therefore we have established the existence of the pressure in (7.17)
for our particular set of choices for ω. It is important to note that
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whilst θ was arbitrary, this still does not give us total freedom in
choosing our ω’s. For instance, for p 6= q, if ω ∈ C(p) and ω′ ∈ C(q)
then ω and ω′ must agree on all but their first terms.

To achieve total freedom, take, for each k-cylinder, an arbitrary
ω ∈ C(ωk). Using bounded variation (7.11), we see

e−bαk ≤
∑
ωk∈Σ∗k

exp(Skφ(ω)) ≤ ebαk

Hence,

lim
k→∞

−b
k

+
1

k
logαk ≤ lim

k→∞

1

k
log

∑
ωk∈Σ∗k

exp(Skφ(ω)) ≤ lim
k→∞

b

k
+

1

k
logαk

and so the sandwiched limit must exist.
Now we prove the second part of our theorem: the existence of

a Gibbs measure. Another consequence of applying our subadditive
lemma (7.7) to the inequality in (7.21) is that

kP (φ)− b ≤ βk ≤ kP (φ)

eb exp(kP (φ)) ≤ αk ≤ eb exp(kP (φ)) (7.22)

we require this formula to generate a Gibbs measure, which we do by
constructing a sequence of discrete measures µm on Σ. For A ⊂ Σ
define:

µm(A) =
1

αm

∑
ω∈A: σmω=θ

exp(Smφ(ω))

since there is only a finite - dm - number of sequences that could satisfy
the condition in the summation, this really is a sum of point masses.
Note that µm(Σ) = 1 for all m ∈ N. it is proved in Falconer [4]
that there exists an outer measure µ which is the weak limit of a
subsequence of (µm) and µ restricts to a measure on the Borel sets.

If ωk ∈ Σ∗k and k ≤ m, then

µm(C(ωk)) =
1

αm

∑
ω∈C(ωk): σmω=θ

exp(Smφ(ω))

=
1

αm

∑
ω∈C(ωk): σmω=θ

exp(Skφ(ω)) exp(Sm−kφ(σkω))

So for any ω′ ∈ C(ωk), we can use bounded variation (7.11) to deduce

e−bµm(C(ωk)) ≤
exp(Skφ(ω′))

αm

∑
ω∈C(ωk): σmω=θ

exp(Sm−kφ(σkω)) ≤ ebµm(C(ωk))
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Writing ω = ω1, . . . , ωk, . . . , ωm, θ1, . . ., and σk(ω) = ωk+1, . . . , ωm, θ1, . . .
we see that the summation condition above ensures that ω1, . . . , ωk are
fixed and so only ωk+1, . . . , ωm may vary. Also notice that the terms
ω1, . . . , ωk do not feature in the summand. Hence, we could replace the
condition by summing over all σk(ω) ∈ Σ such that σm−k(σk(ω)) = θ.
That is, the sum in the above inequality could be written as:∑

η∈Σ: σm−kη=θ

exp(Sm−kφ(η))

observe that this is simply αm−k. Hence,

e−bµm(C(ωk)) ≤ exp(Skφ(ω′))
αm−k
αm

≤ ebµm(C(ωk))

Using the submultiplicativity of the α’s (7.20)

e−2bµm(C(ωk)) ≤
exp(Skφ(ω′))

αk
≤ e2bµm(C(ωk))

e−2b

αk
≤ µm(C(ωk))

exp(Skφ(ω′))
≤ e2b

αk

Finally, applying (7.22) we see that for all m ≥ k, µm satisfies the
Gibbs property (7.18). Hence, the property must also hold for µ.

From the perspective of ergodic theory, a natural next question is:
can we always find a Gibbs measure that is invariant and ergodic with
respect to the shift map? The answer is yes, but a full proof requires
quite technical results from functional analysis (which we omit) to
study the following operator, which is fundamental to the thermody-
namic formalism.

Definition 7.9. Let C(Σ) denote the space of real-valued continuous
functions on Σ. Define Lφ : C(Σ)→ C(Σ) by

Lφg(ω) =
∑

θ: σ(θ)=ω

g(θ)eφ(θ)

Lφ is called the Sinai-Bowen-Ruelle operator.

We would like an an expression for the iterates of Lφ. To obtain

one, define, for each ω0 ∈ D, the map F̃ω0 : Σ→ C(ω0) given by

F̃ω0(ω1, ω2 . . .) = ω0, ω1, ω2 . . .
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Using these maps and the linearity of Lφ we get

Lφ(Lφg) = Lφ

(∑
ω0∈D

(g ◦ F̃ω0)e
φ◦F̃ω0

)

=
∑
ω0∈D

Lφ

(
(g ◦ F̃ω0)e

φ◦F̃ω0
)

=
∑

(ω0,ω1)∈D2

(g ◦ F̃ω0 ◦ F̃ω1)e
φ◦F̃ω0 ◦F̃ω1eφ◦F̃ω0

This can be succinctly re-expressed as

Lφ(Lφg)(ω) =
∑

θ: σ2(θ)=ω

g(θ)eφ(θ)+φ(σθ)

A simple inductive argument then leads to

Lkφg(ω) =
∑

θ: σk(θ)=ω

g(θ) exp(Skφ(θ)) (7.23)

The following theorem gives a collection of functional-analytic re-
sults about Lφ that we do not prove.

Theorem 7.10.
1) there exists ξ > 0 and w ∈ C(Σ) a positive function such that

Lφw = ξw (7.24)

i.e w is an eigenfunction with associated eigenvalue ξ.

2) There exists a Borel probability measure µ supported on Σ satisfy-
ing ∫

Lφg dµ = ξ

∫
g dµ for all g ∈ C(Σ) (7.25)

3)The measure ν on Σ specified by∫
g dν =

∫
gw dµ (7.26)

for all g ∈ C(Σ) is invariant under σ. (we assume a normalisation of
w to ensure that ν is a probability measure).

Remarkably, the eigenvalue ξ turns out to equal eP (φ) and the
measures µ and ν are Gibbs measures with special properties.

77



Theorem 7.11. Let ξ, µ and ν be as in the previous theorem. Then
log(ξ) = P (φ), µ and ν are Gibbs measures and µ satisfies, for any
A ⊂ Σ and k ∈ N,

µ(σk(A)) = exp(kP (φ))

∫
A

exp(−Skφ(ω)) dµ(ω) (7.27)

Proof. Let θ ∈ Σ∗k and A ⊂ Ck(θ). Then using the expression for iter-
ates of Lφ in (7.23) and recalling the notation θ,ω = θ1, . . . θk, ω1, . . .
we have

Lkφ(exp(−Skφ) χA)(ω) =
∑

η: σk(η)=ω

exp(−Skφ(η))χA(η) exp(Skφ(η))

= exp(Skφ(θ,ω)− Skφ(θ,ω))χA(θ,ω)

= χσk(A)(ω)

Now we integrate with respect to µ and apply (7.25) k times.

µ(σk(A)) =

∫
χσk(A) dµ

=

∫
Lkφ(exp(−Skφ(ω)) χA(ω)) dµ(ω)

= ξk
∫

exp(−Skφ(ω)) χA(ω) dµ(ω)

= ξk
∫
A

exp(−Skφ(ω)) dµ(ω) (7.28)

The above is true for any Borel set A ⊂ C(θ), where θ ∈ Σ∗k is
arbitrary. So using additivity of measures and integrals, the statement
holds for any Borel set A ⊂ Σ.

Taking A = C(θ) gives

1 = ξk
∫
C(θ)

exp(−Skφ(ω)) dµ(ω)

using the principle of bounded variation to bound the integrand we
see that for any η ∈ C(θ)

µ(C(θ))e−b ≤ ξ−k exp(Skφ(η)) ≤ µ(C(θ))eb

e−b ≤ ξk exp(−Skφ(η))µ(C(θ)) ≤ eb (7.29)

78



Now summing over all θ ∈ Σ∗k gives

e−bξk
∑
θ∈Σ∗k

µ(C(θ)) ≤
∑
θ∈Σ∗k

exp(Skφ(η)) ≤ ebξk
∑
θ∈Σ∗k

µ(C(θ))

lim
k→∞

(
−b
k

)
+ log(ξ) ≤ P (φ) ≤ log(ξ) + lim

k→∞

(
b

k

)
and so P (φ) = log ξ ⇒ ξ = exp(P (φ)). Plugging this value of ξ into
(7.28) gives the property of µ expressed in (7.27). Plugging the same
value into (7.29) shows that µ is a Gibbs measure. Finally, by the
definition of ν given in (7.26), we see that

( inf
ω∈Σ

w(ω))µ(C(θ)) ≤ ν(C(θ)) ≤ (sup
ω∈Σ

w(ω))µ(C(θ))

where the infimum and supremum are positive finite numbers. There-
fore, ν is also a Gibbs measure (just check the definition) although
with possibly different constants.

Using the special property of of µ that we just proved, we can
then show that µ, and thus every Gibbs measure, is ergodic. Firstly,
observe that if A ⊂ Σ is invariant then A = σ−k(A) for all k ∈ N. We
rewrite this expression as follows. If η ∈ Σ∗k and Aη = {η,ω : ω ∈ A},
then

A = σ−k(A) =
⋃
η∈Σ∗k

Aη

and so if θ ∈ Σ∗k, then A ∩ C(θ) = Aθ. Hence,

σk(A ∩ C(θ)) = σk(Aθ) = A (7.30)

This is a useful property of invariant sets that we will need in the next
proposition.

Proposition 7.12. All Gibbs measures are ergodic with respect to
the shift map σ.

Proof. Let A ⊂ Σ be an invariant set. Using (7.30) we see that for
any θ ∈ Σ∗k

µ(A) = µ(σk(A ∩ C(θ))) = exp(kP (φ))

∫
A∩C(θ)

exp(−Skφ(η)) dµ(η)

By the principle of bounded variation

e−bµ(A) ≤ exp(kP (φ)− Skφ(ω))µ(A ∩ C(θ))
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for any ω ∈ C(θ). Repeating this argument using Σ instead of A and
taking an upper rather than lower bound

exp(kP (φ)− Skφ(ω))µ(Σ ∩ C(θ)) ≤ ebµ(Σ)

=⇒ µ(C(θ) ≤ eb exp(Skφ(ω)− kP (φ))

Combining the above inequalities gives

µ(A)µ(C(θ)) ≤ e2bµ(A ∩ C(θ)) (7.31)

Note that this expression holds for all cylinder sets. Now if we let B ⊂
Σ be any Borel set, a standard argument involving approximating the
characteristic function of B by linear combinations of characteristic
functions of cylinders and using the monotone convergence theorem,
yields

µ(A)µ(B) ≤ e2bµ(A ∩B)

Taking B = Σ\A gives

µ(A)µ(Σ\A) ≤ e2bµ(A ∩ (Σ\A)) = 0

and so either µ(A) = 0 or µ(Σ\A) = 0, as desired.
Simply by definition, if ν is any other Gibbs measures then there

exists c1, c2 constants such that for any Borel set A ⊂ Σ we have

c1µ(A) ≤ ν(A) ≤ c2µ(A)

So if A is invariant then clearly ν(A) ∈ {0, 1}, which completes the
proof.

This concludes our presentation of generic results from the ther-
modynamic formalism. Everything from here onwards will be results
specific to our effort to find the dimension of the non-linear carpet.

A lower bound on the Hausdorff dimension of the non-linear
carpet 7.4.

We investigate potentials of the form

φs(ω) = log |T̃ ′ω1
(σi)| − s log 3 + c

where s, c ∈ R. The fact that this is a potential follows easily from
lemma (7.4), which says that log |T̃ ′ω1

(σi)| defines a potential. We
show that the pressure - P (φs) - is continuous and strictly decreasing
in s.
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Lemma 7.13. Let φs be as above. Then, for any δ > 0, we have

P (φs)− P (φs+δ) = δ log 3

which implies that P is continuous and strictly decreasing in s.

Proof.

P (φs+δ) =
1

k
log
∑
i∈Σ∗k

exp(Sk(log |T̃ ′ω1
(σi)| − (s+ δ) log 3 + c))

=
1

k
log exp(−kδ log 3)

∑
i∈Σ∗k

exp(Skφs(ω))

= −δ log 3 + P (φs)

which gives the result.

The argument to follow is original to this paper but based off ideas
in the paper of McMullen [11] presented earlier. We define a notion
of an approximate square on X2 and a lifted approximate square on
the sequence space Σ. We then prove versions of lemmas (5.4) and
(5.5), which essentially state that when calculating the dimension, it
is sufficient to consider only covers of Λ by approximate squares or
covers of Σ by lifted squares. The proofs of these two lemmas will be
brief, since they are nearly identical to the ones for McMullen carpets.

Definition 7.14. For each finite sequence ωl ∈ Σ∗l , set

kωl = b− log3 |Tωl(X)|c (7.32)

(we will often drop the subscript on the k for cleanness of expres-
sion). Then define, for any extension (ik, jk) = ωk > ωl = (il, jl), an
approximate square to be

S[il, jk] = πx(Fωl(X
2))× πy(Fωk(X2))

= Tωl(X)×

[
k∑

m=1

jm3−m,
k∑

m=1

jm3−m + 3−k

]

Note that kωl ≥ l and kωl is the unique integer satisfying:

1

3
|Tωl(X)| ≤ 3−k ≤ |Tωl(X)| (7.33)
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Since the height of an approximate square is 3−k, this inequality allows
us to bound the diameter:

3−k
√

2 ≤ |S[il, jk]| ≤ 3−k
√

10 (7.34)

Now we introduce the companion of an approximate square residing
in Σ.

Definition 7.15. Let ωl,ωk ∈ Σ where l and k are related as above.
Then define

A[il, jk] = {(pk,qk) ∈ Σ∗k : pl = il and qk = jk}

S̃[il, jk] = A[il, jk]× Σ

We call S̃[il, jk] a lifted approximate square.

If we denote by ai,j the number of mappings in the jth row i.e
ai,j = |{(p, q) ∈ D : q = j}| then it follows that

|A[il, jk]| = ail+1,jl+1
· · · aik,jk (7.35)

This cardinality is essential since it equals the number of cylinder sets
contained inside the associated lifted squares. In fact, this matches
the number of rectangles Fωk(X

2) contained in an approximate square
because of the simple relationship:

ψ(S̃[il, jk]) = S[il, jk] ∩ Λ

Unfortunately, we could not say that the pre-image of an approximate
square is a lifted square since our map ψ is not necessarily injective.
However, since we are assuming the Open Set Condition, it is true that
only the boundaries of two distinct approximate squares may overlap
and so just as in (5.12), we have inclusions:

S̃[il, jk] ⊂ ψ−1(S[il, jk]) ⊂
⋃

i′l,j
′
k∈I

S̃[i′l, j
′
k] (7.36)

where the index set I contains elements for which S[i′l, j
′
k]∩S[il, jk] 6= ∅.

It is a simple geometric consequence of (7.33) that |I| ≤ 12, which
means we can pass between covers of approximate squares and lifted
squares and only alter the size of the cover by a constant.

Going forward, we will be interested in covers of the attractor by
approximate squares C = {S[il, jk]}∞k=1. We write Nk for the number
of k-level approximate squares, so Nk = |{S[il, jk′ ] : k′ = k}|. It is
worth emphasising that given two k-level approximate squares S[il1 , jk]
and S[il2 , jk] we need not have l1 = l2; indeed, it is one of the main
complications of the non-linear carpet compared to McMullen’s self-
affine carpet.
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Lemma 7.16.

Hr(Λ) = 0 ⇐⇒ ∀ε > 0 ∃ C such that
∞∑
k=1

Nk3
−kr < ε

Proof. By (7.34), we have |S[il, jk]| ≈ 3−k so in the statement of the
lemma we could replace 3−k with |S[il, jk]|. Thus, the backwards im-
plication is obvious.

For the forwards implication, let ε > 0. By assumption, there
exists a δ-cover {Ei} of Λ such that

∑
|Ei|r < ε. We may assume

Ei ⊂ Λ. (since if not, {Ei∩Λ} is a cover of Λ such that
∑
|Ei∩Λ|r ≤∑

|Ei|r < ε.)
There exists a constant c (34 should suffice), such that each Ei can

be covered by c approximate squares with smaller diameter. Hence,∑
Nk|S[il, jk]|r ≤ c

∑
|Ei|r < cε

We can translate the foregoing lemma to the symbolic space which
will be more convenient for our purposes. We write C̃ = {S̃[il, jk]}∞k=1

and denote the number of k-level lifted squares by Ñk.

Lemma 7.17.

Hr(Λ) = 0 ⇐⇒ ∀ε > 0 ∃ C̃ such that
∞∑
k=1

Ñk3
−kr < ε

Proof. For the forwards implication, we use lemma (7.16) to obtain a
cover of approximate squares satisfying

∑
Nk3

−kr < ε/12. Note that
{ψ−1(S[il, jk])} is a cover for Σ. Moreover, by (7.36), each element
of this cover is contained in 12 lifted squares. Hence there is a cover
{S̃[il, jk]} such that∑

Ñk3
−kr ≤ 12

∑
Nk3

−kr < ε

The backwards implication is obvious since if {S̃[il, jk]} is a cover

of Σ then {ψ(S̃[il, jk])} is a cover of Λ.

So if we are to obtain a lower bound, we must define an epsilon such
that any cover by approx squares has its respective sum larger than
epsilon. We achieve this in a similar fashion to McMullen, only we
require the machinery of the thermodynamic formalism to deal with
the difficulties of non-linearity. Our machinery allows us to specify
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a potential with pressure equal to zero and thus obtain an invariant
ergodic Gibbs measure supported on the shift space. The key step will
then be to apply the ergodic theorem to find the ‘average’ exponential
decay rate of our non-linear maps and the ‘average’ exponential growth
rate of the number of k-level rectangles inside the same row.

Using these constants we define a new potential with the same
Gibbs measure. This measure has the important property that, in the
limit, the ‘typical’ value of a cylinder set is nearly the same as that
of the other cylinders that belong in the same lifted square. That
is, asymptotically, the measure becomes less concentrated and more
spread out, which is precisely the behaviour we want in order to bound
the dimension.

Now consider the potential ϕ(ω) = log |T̃ ′ω1
(σi)| as discussed in

lemma (7.4). It follows from theorem (7.8) and the results connected
to the Sinai-Bowen-Ruelle operator that there exists µ an invariant
ergodic Gibbs measure for this potential. With this measure we can
introduce two important constants.

Lemma 7.18. Let ϕ and µ be as above. Then there exists constants
λ and α such that:

1) eλ = lim
k→∞
|T̃ ′ωk(σ

ki)|
1
k µ− almost everywhere in Σ

2) eα = lim
k→∞

(aω1 · · · aωk)
1
k µ− almost everywhere in Σ

Proof. For any ω ∈ Σ, we have

|T̃ ′ωk(σ
ki)|

1
k = exp(

1

k
Skϕ(ω)) = exp(

1

k

k−1∑
m=0

ϕ(σmω)) (7.37)

Now, since φ is continuous and Σ is compact, φ is is bounded on Σ.
This implies, because we are working on a finite measure space, that
φ ∈ L1(µ). Hence, we can apply the Birkhoff ergodic theorem to get:

lim
k→∞

1

k

k−1∑
m=0

ϕ(σmω) =

∫
φdµ µ− almost everywhere

Setting λ =
∫
φ dµ gives 1). The second part is very similar.

(aω1 · · · aωk)
1
k = exp(

1

k

k−1∑
m=0

f(σmω)
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where f(ω) = log |aω1|. Clearly, f ∈ L1(µ) and so we apply the ergodic
theorem

lim
k→∞

1

k

k−1∑
m=0

f(σmω) =

∫
fdµ µ− almost everywhere

taking α =
∫
f dµ gives 2).

At last, we arrive at the central theorem of this section.

Theorem 7.19. Define a potential by

φ(ω) = log |T̃ ′ω1
(σi)| − (

α

λ
+ s) log 3− α− λ

where, by lemma (7.13), s ∈ R is chosen such that P (φ) = 0. Then:

dimH(Λ) ≥ s

Proof. Let r < s. Firstly, we note φ and ϕ (as in lemma (7.18)) differ
only by a constant and so they share the same Gibbs measures (see
chapter 11 of Falconer [4]). This means that the invariant ergodic
measure µ used above satisfies the Gibbs property for both potentials,
although the precise constants may be different. We calculate the
exponential of the ergodic sums of φ:

eSkφ(ω) = eSk(log |T̃ ′ω1 (σi)|)e−k(α
λ

+s) log 3−kα−kλ

= elog |T̃ ′ωk (σki)|e−k(α
λ

+s) log 3−kα−kλ

=
|T̃ ′ωk(σ

ki)|
ek(α+αλ−1 log 3)eλk

3−ks (7.38)

Reasoning informally: If, for large k, we substitute for α and λ the
quantities under the limit in lemma (7.18) and use the Gibbs property
for µ we could deduce that:

µ(C(ωk)) � exp(Skφ(ω)) ≈ 1

aωl+1
· · · aωk

3−ks

which, by (7.35), implies that the measure is spread almost uniformly
amongst cylinders in the same lifted square.

In order to formalise this argument, Pick δ = (s−r) log 3
3−λ−1α

and define
for each N ∈ N,
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EN =
{
ω ∈ Σ : ek(λ−δ) ≤ |T̃ ′ωk(σ

ki)| ≤ ek(λ+δ) and

ek(α−δ) ≤ aω1 · · · aωk ≤ ek(α+δ) for all k ≥ N
}

Observe that EN ⊂ EN+1 for all N ∈ N and that

{ω ∈ Σ : lim
k→∞
|T̃ ′ωk(σ

ki)|
1
k = eλ and lim

k→∞
(aω1 · · · aωk)

1
k = eα} ⊂

∞⋃
N=1

EN

(7.39)

Since if ω belongs to the left hand side then, by definition of a limit,
there exists N ∈ N such that for all k ≥ N :

|T̃ ′ωk(σ
ki)| 1k

eλ
< eδ and

(aω1 · · · aωk)
1
k

eα
< eδ

raising everything to the k and multiplying up the denominators gives
precisely the conditions that define EN . Applying lemma (7.18) it
follows that the left hand side of (7.39) has full measure and so using
the nested sequence property:

lim
N→∞

µ(EN) = 1

It will suffice for our purposes to pick N such that µ(EN) > 0. This
set of positive measure contains sequences whose k-length truncations
(k ≥ N) index cylinders - and hence rectangles - for which we can:

1) estimate their horizontal widths (In terms of the derivatives of
our non-linear maps).

2) estimate the number of other cylinders/rectangles that belong
to the same k-level lifted/approximate square.

Now choose

ε = min

{
µ(EN)

a0(3b0)−λ−1α
, (cNmin|X|)r

}
where a0 is the constant associated to our Gibbs measure as in (7.18),
b0 is the constant derived in the principle of bounded distortion i.e b0

is such that:

b−1
0 ≤

|Tωk(X)|
|T̃ ′ωk(σki)|

≤ b0

and cmin is the smallest value that the derivatives of the maps in our
IFS can take.

Let C = {S̃[il, jk]} be any cover by lifted squares squares of Σ. We
may assume that for every element in the cover l ≥ N . To see why,
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suppose that there exists S̃[il′ , jk′ ] such that l < N . Recalling the
proof of bounded distortion , we had that there exists w ∈ X such
that

|Tωl′ (X)| = |T ′ωl′ (w)||X| ≥ cl
′

min|X|

Now using the relation between k′ and l′ in the definition of approxi-
mate square,

k′ =
⌊
− log3 |Tωl′ (X)|

⌋
≤ log3 |c−l

′

min|X|−1| < log3 |c−Nmin|X|−1|

From which it follows that

∞∑
k=1

Nk3
−kr ≥ 3−k

′r ≥ (cNmin|X|)r > ε

which, by lemma (7.17) would complete the argument for the lower
bound, justifying the claim that we need only consider covers such
that l ≥ N for all elements.

For each lifted square in the cover: S̃[il, jk] = A[il, jk]×Σ, consider

Y [il, jk] = {(ik, jk) ∈ A[il, jk] : ∃(i, j) ∈ EN such that (i, j) > (ik, jk)}

so this set indexes cylinders inside a particular lifted square that con-
tain points in EN , meaning that we can find efficient bounds for the
measure of these cylinders - a fact which we now prove.

Fix ωk ∈ Y [il, jk] and ω ∈ EN such that ω > ωk. Firstly, we show

e−kλ
−1 log 3 ≤ (3b0)−λ

−1

el(1−δλ
−1) (7.40)

(note: λ is a decay constant and so negative). By definition of an
approximate square:

3−k ≤ |Tωl(X)| ≤ 3.3−k (7.41)

By the principle of bounded distortion we have, for any i ∈ πx(Σ),

b−1
0 |Tωl(X)| ≤ |T̃ ′ωl(σ

li)| ≤ b0|Tωl(X)| (7.42)

and since l ≥ N we can use the estimate given in the definition of the
set EN

el(λ−δ) ≤ |T̃ ′ωl(σ
li)| ≤ el(λ+δ) (7.43)

Combining all three inequalities above, we deduce

1

3
b−1

0 el(λ−δ) ≤ 3−k ≤ b0e
l(λ+δ)
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Raising both sides to λ−1 and just considering the first inequality we
see

e−kλ
−1 log 3 = 3−kλ

−1 ≤ (3b0)−λ
−1

el(1−δλ
−1)

as desired.
Now we bound from above exp(Skφ(ω)), using the estimates given

by our set EN multiple times and the inequality just proven. By (7.38)
we have

exp(Skφ(ω)) = e−kα e−kαλ
−1 log 3 e−kλ |T̃ ′ωk(σ

ki)| 3−ks

≤ e−kα e−kαλ
−1 log 3 ekδ 3−ks

≤ e−kα (3b0)−λ
−1α elα(1−δλ−1) ekδ 3−ks

≤ (3b0)−λ
−1α ekδ

(aω1 · · · aωk)
(aω1 · · · aωl) elδ e−lαδλ

−1

ekδ 3−ks

≤ (3b0)−λ
−1α 1

(aωl+1
· · · aωk)

3−ks ekδ(3−λ
−1α)

≤ (3b0)−λ
−1α 1

(aωl+1
· · · aωk)

3−ks ek(s−r) log 3

≤ (3b0)−λ
−1α 3−kr

(aωl+1
· · · aωk)

Note that in passing to the penultimate line we simply used δ =
(s−r) log 3
3−λ−1α

.
Since µ is a Gibbs measure and P (φ) = 0, we can bound the

measure of the cylinder C(ωk):

µ(C(ωk)) ≤ a0 exp(Skφ(ω)) ≤ a0(3b0)−λ
−1α 3−kr

(aωl+1
· · · aωk)

(7.44)

Now recall that our aim is to bound the sum
∑
Ñk3

−kr from below

by ε, where Ñk is the number of k-level approximate squares in our
cover. To achieve this, we first estimate Ñk3

−kr for each k ∈ N. Let

Ik = {(il, jk) : S̃[il, jk] ∈ C}

be an index set for the k-level lifted squares and note that |Ik| = Ñk.
Then applying (7.44):

1

a0(3b0)−λ−1α

∑
(il,jk)∈Ik

∑
(ik,jk)∈Y [(il,jk)]

µ(C(ik, jk))
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≤
∑
Ik

∑
Y [(il,jk)]

1

(aωl+1
· · · aωk)

3−kr (7.45)

By construction, the rectangles ψ(C(ik, jk)) - where (ik, jk) ∈ Y [(il, jk)]
- all belong to the same k-level row, by which we mean that their
projections onto the y-axis are all equal. Hence, the k-length sequence
(aωm)km=1 is independent of a choice of element of Y [(il, jk)] and so the
product aωl+1

· · · aωk is also independent of such a choice. Also note
that:

|Y [(il, jk)]| ≤ |A[(il, jk)]| = aωl+1
· · · aωk

so we can bound (7.45) by

≤
∑
Ik

3−kr = |Ik|3−kr = Nk3
−kr

Finally, using the fact that C covers Σ and so covers EN and the fact
that, by definition, any cylinder that overlaps with EN is indexed by
an element of some Y [(il, jk)]:

EN ⊂
∞⋃
k=1

⋃
Ik

⋃
Y [(il,jk)]

C(ik, jk)

Therefore,

ε ≤ µ(EN)

a0(3b0)−λ−1α
≤ 1

a0(3b0)−λ−1α

∞∑
k=1

∑
Ik

∑
Y [(il,jk)]

µ(C(ik, jk))

≤
∞∑
k=1

Nk3
−kr

which, by lemma (7.17), completes the proof.

Closing remarks 7.5.

Whilst we were able to adapt the methods of McMullen to the
non-linear setting in the case of a lower bound, it appears less straight-
forward to do the same for an upper bound. To see why, recall that
McMullen showed that any sequence i coding a point of the attractor
must have infinitely many truncations, ik < i, that index cylinders
whose measure within its lifted square is more or less uniform. More-
over, if one cylinder inside a lifted square has uniform measure, then
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so do the rest of the cylinders in the square - this follows from the
choice of Bernoulli measure placed on the attractor.

In our setting however, things are more complicated. We have
proved that the proportion of k-cylinders that have this uniform mea-
sure property is increasing to 1 as k tends to infinity, but we need a
way of dealing with the ‘deviant’ sequences whose contractive effect
differs significantly from typical sequences. How this can be achieved
is a question for further investigation.
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